在Tensorflow中重新训练SavedModel

时间:2019-10-01 00:18:18

标签: tensorflow resuming-training

有没有重新训练SavedModel的示例?他们声称在许多地方可以代替使用检查点,但是没有提供示例。当我尝试执行时,模型的变量保持不变:

...
model_save_path = "test.pb"

with tf.Session(graph=tf.Graph()) as net:
        ...
        for e in range(epochs):
            # Train the model
            ...
            builder = saved_model.builder.SavedModelBuilder(model_save_path)    
            signature = predict_signature_def(inputs={'myInput': X, 'errorInput': Y},
                                                  outputs={'myOutput': out, 'errorOutput': mse})
            builder.add_meta_graph_and_variables(sess=net,
                                 tags=[tag_constants.TRAINING],
                                 signature_def_map={'predict': signature})
            builder.save()

            print(error)

上面的代码训练模型,将每个交互存储在模型中,并打印相关的错误。该代码的输出错误正在改善:

2773.6885

291.35968

263.40912

255.27612

当我们再次加载它并尝试对其进行训练时,错误保持不变:

...
# Load the model
model_save_path = "test.pb"
loaded = tf.saved_model.load(net, ["train"], model_save_path)
graph = tf.get_default_graph()
...    

with tf.Session(graph=tf.Graph()) as net:
        ...
        for e in range(epochs):
            # Train the model
            ...

            builder = saved_model.builder.SavedModelBuilder(model_save_path)    
            signature = predict_signature_def(inputs={'myInput': X, 'errorInput': Y},
                                                  outputs={'myOutput': out, 'errorOutput': mse})
            builder.add_meta_graph_and_variables(sess=net,
                                 tags=[tag_constants.TRAINING],
                                 signature_def_map={'predict': signature})
            builder.save()

            print(error)

输出总是来自初始训练的错误:

255.27612

255.27612

255.27612

255.27612

0 个答案:

没有答案