我有关于出境航班的数据,包括日期,月份,机场等信息。 我想遍历各行,并为每行计算从同一机场出发的15m以内的航班数。 我的代码似乎可以运行,但是非常慢(在10万行中,需要约一个小时才能运行)。 有没有办法提高效率? 这是一个示例文件link 谢谢!
[Key]
答案 0 :(得分:1)
import pandas as pd
cols = ['Month', 'DayofMonth', 'DayOfWeek', 'DepTime', 'UniqueCarrier', 'Origin', 'Dest', 'Distance']
data = [
['c-8', 'c-21', 'c-7', 1934, 'AA', 'ATL', 'DFW', 732],
['c-6', 'c-19', 'c-2', 1942, 'AA', 'ATL', 'CLE', 999],
['c-6', 'c-19', 'c-2', 1955, 'AA', 'ATL', 'CLE', 111],
['c-4', 'c-20', 'c-3', 1548, 'US', 'PIT', 'MCO', 834],
['c-9', 'c-2', 'c-5', 1422, 'XE', 'RDU', 'CLE', 416],
['c-11', 'c-25', 'c-6', 1015, 'OO', 'DEN', 'MEM', 872],
['c-10', 'c-7', 'c-6', 1828, 'WN', 'MDW', 'OMA', 423]
]
df = pd.DataFrame(data=data, columns=cols)
df['close_out15'] = 0
def algo_v1(df):
time_allowance = 15
close_out = []
i=0
for index, row in df.iterrows():
i+=1
idf = df.loc[(df['Origin'] == row['Origin']) &
(df['Month'] == row['Month']) &
(df['DayofMonth'] == row['DayofMonth']) &
(df['DepTime'] < row['DepTime'] + time_allowance) &
(df['DepTime'] > row['DepTime'] - time_allowance), :]
close_out.append(len(idf))
col_name = 'close_out' + str(time_allowance)
df[col_name] = close_out
return df
#print(algo_v1(df))
#%timeit algo_v1(df)
Month DayofMonth DayOfWeek DepTime ... Origin Dest Distance close_out15
0 c-8 c-21 c-7 1934 ... ATL DFW 732 1
1 c-6 c-19 c-2 1942 ... ATL CLE 999 2
2 c-6 c-19 c-2 1955 ... ATL CLE 111 2
3 c-4 c-20 c-3 1548 ... PIT MCO 834 1
4 c-9 c-2 c-5 1422 ... RDU CLE 416 1
5 c-11 c-25 c-6 1015 ... DEN MEM 872 1
6 c-10 c-7 c-6 1828 ... MDW OMA 423 1
[7 rows x 9 columns]
10 loops, best of 3: 28.4 ms per loop
groupby
和apply
方法就可以进行一些基本的改进。def filter_and_count(df):
time_threshold = 15
for idx, row in df.iterrows():
row['close_out15'] = df['UniqueCarrier'].loc[
(df['DepTime'] <= row['DepTime'] + time_threshold)
& (df['DepTime'] >= row['DepTime'] - time_threshold)
].count()
def algo_v2(df):
df.groupby(['Origin', 'Month', 'DayofMonth']).apply(filter_and_count)
return df
#print(algo_v2(df))
#%timeit algo_v2(df)
Month DayofMonth DayOfWeek DepTime ... Origin Dest Distance close_out15
0 c-8 c-21 c-7 1934 ... ATL DFW 732 1
1 c-6 c-19 c-2 1942 ... ATL CLE 999 2
2 c-6 c-19 c-2 1955 ... ATL CLE 111 2
3 c-4 c-20 c-3 1548 ... PIT MCO 834 1
4 c-9 c-2 c-5 1422 ... RDU CLE 416 1
5 c-11 c-25 c-6 1015 ... DEN MEM 872 1
6 c-10 c-7 c-6 1828 ... MDW OMA 423 1
[7 rows x 9 columns]
100 loops, best of 3: 18.8 ms per loop
仅按某些字段进行分组,就可以注意到大约提高了34%。
有两个主要选项:
请注意,这两个选项也可能一起工作。
使用Numba或Ctyhon可能是good options。
Multiprocessing module是替代方法。其他更高级的抽象选项是this one。