是否可以直接使用emmeans()获得效果大小(例如Cohen d或最合适的效果)?
我找不到任何东西可以通过emmeans()获得效果大小
post <- emmeans(fit, pairwise~ favorite.pirate | sex)
emmip(fit, ~ favorite.pirate | sex)
答案 0 :(得分:0)
图书馆(yarrr) 查看(盗版) 图书馆(LME4) 库(lmerTest)
fit <-lmer(体重〜最爱。海盗*性别+(1 |大学),数据=海盗) anova(fit,ddf =“ Kenward-Roger”)
发布<-emmeans(fit,pairwise〜sex) 发布
答案 1 :(得分:0)
没有用于效果大小计算的内置规定,但是您可以通过定义一个自定义对比度函数将每个成对比较除以sigma值来将它们凑在一起:
mypw.emmc = function(..., sigma = 1) {
result = emmeans:::pairwise.emmc (...)
for (i in seq_along(result[1, ]))
result[[i]] = result[[i]] / sigma
result
}
这是一个测试运行:
> mypw.emmc(1:3, sigma = 4)
1 - 2 1 - 3 2 - 3
1 0.25 0.25 0.00
2 -0.25 0.00 0.25
3 0.00 -0.25 -0.25
对于您的模型,错误SD为9.246(请看summary(fit)
;所以,...
> emmeans(fit, mypw ~ sex, sigma = 9.246, name = "effect.size")
NOTE: Results may be misleading due to involvement in interactions
$emmeans
sex emmean SE df lower.CL upper.CL
female 63.8 0.434 3.03 62.4 65.2
male 74.5 0.809 15.82 72.8 76.2
other 68.8 1.439 187.08 65.9 71.6
Results are averaged over the levels of: favorite.pirate
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$contrasts
effect.size estimate SE df t.ratio p.value
female - male -1.158 0.0996 399 -11.624 <.0001
female - other -0.537 0.1627 888 -3.299 0.0029
male - other 0.621 0.1717 981 3.617 0.0009
Results are averaged over the levels of: favorite.pirate
Degrees-of-freedom method: kenward-roger
P value adjustment: tukey method for comparing a family of 3 estimates
尽管有些警告:
sigma
中的变化。这不是一个很好的例子,因为
a。这些因素相互作用(爱德华·洛伊的个人资料有所不同)。 另外,请参阅警告消息。
b。该模型是奇异的(拟合模型时会警告),college
的估计方差为零)