2D点数据的轮廓图

时间:2019-09-28 08:43:27

标签: python numpy matplotlib multidimensional-array

我有一组具有相应坐标的数据(值从0到1),我想用matplotlib的contourf在地图上绘制这些数据。

问题是我有30-40个数据点,坐标网格为270x480,这些轮廓看起来像微小的点。

因此,我需要以某种方式插值数据,以便使孤独的点看起来像小斑点,并且这些斑点将合并在一起。

我已经阅读了许多插值样本,但是几乎所有样本都涉及一维数据或一些非常复杂的示例。

我尝试过ndimage.gaussian_filter(array,3),但它使我的点变得更少了。

因此,它看起来像: (https://s8.hostingkartinok.com/uploads/images/2019/09/6939ee7e1291c684b7a467ff610a7235.png) 这是它的外观: (https://s8.hostingkartinok.com/uploads/images/2019/09/445833329d9f1f332e1603f25efe7b1e.png

编辑:我已经尝试过高斯模糊(ndimage.gaussian_filter),它可以使图片变得非常模糊,但是由于数据丢失-已知坐标的值出错了

edit2:我已经对scipy.interpolate.griddata进行了一些应用,并且有资料来源:

#!/usr/bin/python
import pylab as pl
import numpy as np
from scipy import interpolate

FR = np.array([[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 4.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 7.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
               [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000]])
points = []
values = []
for x in range(33):
    for y in range(20):
        points.append([x,y])
        if FR[x][y] > 0.0:
            values.append(FR[x][y])
        else:
            values.append(0)
            pass
X, Y = np.mgrid[0:32:33j, 0:19:20j]
x, y = np.mgrid[0:32:66j, 0:19:40j]
grid = interpolate.griddata(points, values, (x,y), method='cubic')
fig, axes = pl.subplots(1, 2, figsize=(15, 4))
c1 = axes[0].contourf(X, Y, FR)
pl.colorbar(c1, ax=axes[0]);
c2 = axes[1].contourf(x, y, grid)
#c2 = axes[1].contourf(x, y, grid, levels = c1.levels)
pl.colorbar(c2, ax=axes[1]);
pl.show()

那些预定义的数组看起来很糟糕,但是让我对我的数据集有所了解。 因此,that的样子。

它首先破坏了数据(现在最大点的值为6.4,而不是7),其次没有造成任何明显的模糊-数据点之间仍然存在许多几乎为零的值。更不用说负面数据的那些奇怪条纹了。

是否有某种方法可以增强这种插值,以使这些斑点集中在一个斑点中?

2 个答案:

答案 0 :(得分:0)

是的,我有一个问题:您的代码在哪里?您的绘制数据在哪里? 我正在使用答案,因为评论需要50个代表。交付代码后,我将对其进行编辑。

答案 1 :(得分:0)

您需要将数据插值到常规网格中。看看this Jupyter Notebook。这是它的内容(使用另一个数据集):

library(dplyr)
purrr::map(dat, . %>% mutate_all(~recode(., "C"=NA_character_)))

#$dat_1
#     x
#1    A
#2    B
#3 <NA>
#4    D

#$dat_2
#     x
#1    A
#2    B
#3 <NA>
#4    D

This notebook向您展示如何绘制轮廓图。