我从Kafka获取事件,在Spark上丰富/过滤/转换事件,然后将其存储在ES中。我将抵消额返还给Kafka
我有两个问题/问题:
(1)我当前的Spark作业非常慢
我有一个主题的50个分区和20个执行程序。每个执行器都有2个核心和4g的内存。我的驱动程序有8克内存。我正在消耗1000个事件/分区/秒,我的批处理间隔是10秒。这意味着我在10秒内消耗了500000个事件
我的ES群集如下:
20个碎片/索引
3个主实例c5.xlarge.elasticsearch
12个实例m4.xlarge.elasticsearch
磁盘/节点= 1024 GB,所以总共12 TB
我的计划和处理延迟越来越大
(2)如何在执行器上提交偏移量?
当前,我在执行程序上丰富/转换/过滤事件,然后使用 BulkRequest 将所有内容发送到ES。这是一个同步过程。如果得到积极的反馈,我会将偏移量列表发送给驱动程序。如果没有,我发回一个空清单。在驱动程序上,我将偏移量提交给Kafka。我相信,应该有一种方法,我可以在执行器上提交偏移量,但是我不知道如何将kafka Stream传递给执行器:
((CanCommitOffsets) kafkaStream.inputDStream()).commitAsync(offsetRanges, this::onComplete);
这是向Kafka提交偏移量的代码,需要Kafka Stream
这是我的总体代码:
kafkaStream.foreachRDD( // kafka topic
rdd -> { // runs on driver
rdd.cache();
String batchIdentifier =
Long.toHexString(Double.doubleToLongBits(Math.random()));
LOGGER.info("@@ [" + batchIdentifier + "] Starting batch ...");
Instant batchStart = Instant.now();
List<OffsetRange> offsetsToCommit =
rdd.mapPartitionsWithIndex( // kafka partition
(index, eventsIterator) -> { // runs on worker
OffsetRange[] offsetRanges = ((HasOffsetRanges) rdd.rdd()).offsetRanges();
LOGGER.info(
"@@ Consuming " + offsetRanges[index].count() + " events" + " partition: " + index
);
if (!eventsIterator.hasNext()) {
return Collections.emptyIterator();
}
// get single ES documents
List<SingleEventBaseDocument> eventList = getSingleEventBaseDocuments(eventsIterator);
// build request wrappers
List<InsertRequestWrapper> requestWrapperList = getRequestsToInsert(eventList, offsetRanges[index]);
LOGGER.info(
"@@ Processed " + offsetRanges[index].count() + " events" + " partition: " + index + " list size: " + eventList.size()
);
BulkResponse bulkItemResponses = elasticSearchRepository.addElasticSearchDocumentsSync(requestWrapperList);
if (!bulkItemResponses.hasFailures()) {
return Arrays.asList(offsetRanges).iterator();
}
elasticSearchRepository.close();
return Collections.emptyIterator();
},
true
).collect();
LOGGER.info(
"@@ [" + batchIdentifier + "] Collected all offsets in " + (Instant.now().toEpochMilli() - batchStart.toEpochMilli()) + "ms"
);
OffsetRange[] offsets = new OffsetRange[offsetsToCommit.size()];
for (int i = 0; i < offsets.length ; i++) {
offsets[i] = offsetsToCommit.get(i);
}
try {
offsetManagementMapper.commit(offsets);
} catch (Exception e) {
// ignore
}
LOGGER.info(
"@@ [" + batchIdentifier + "] Finished batch of " + offsetsToCommit.size() + " messages " +
"in " + (Instant.now().toEpochMilli() - batchStart.toEpochMilli()) + "ms"
);
rdd.unpersist();
});
答案 0 :(得分:0)
您可以将偏移逻辑移到rdd循环上方...我正在使用下面的模板以获得更好的偏移处理和性能
JavaInputDStream<ConsumerRecord<String, String>> kafkaStream = KafkaUtils.createDirectStream(jssc,
LocationStrategies.PreferConsistent(),
ConsumerStrategies.<String, String>Subscribe(topics, kafkaParams));
kafkaStream.foreachRDD( kafkaStreamRDD -> {
//fetch kafka offsets for manually commiting it later
OffsetRange[] offsetRanges = ((HasOffsetRanges) kafkaStreamRDD.rdd()).offsetRanges();
//filter unwanted data
kafkaStreamRDD.filter(
new Function<ConsumerRecord<String, String>, Boolean>() {
@Override
public Boolean call(ConsumerRecord<String, String> kafkaRecord) throws Exception {
if(kafkaRecord!=null) {
if(!StringUtils.isAnyBlank(kafkaRecord.key() , kafkaRecord.value())) {
return Boolean.TRUE;
}
}
return Boolean.FALSE;
}
}).foreachPartition( kafkaRecords -> {
// init connections here
while(kafkaRecords.hasNext()) {
ConsumerRecord<String, String> kafkaConsumerRecord = kafkaRecords.next();
// work here
}
});
//commit offsets
((CanCommitOffsets) kafkaStream.inputDStream()).commitAsync(offsetRanges);
});