我在dataframe中有数据,该数据帧是从azure eventhub获得的。 然后,我将这些数据转换为json对象,并将所需的数据存储到数据集中,如下所示。
用于从eventhub获取数据并将其存储到数据帧中的代码。
val connectionString = ConnectionStringBuilder(<ENDPOINT URL>)
.setEventHubName(<EVENTHUB NAME>).build
val currTime = Instant.now
val ehConf = EventHubsConf(connectionString)
.setConsumerGroup("<CONSUMER GRP>")
.setStartingPosition(EventPosition
.fromEnqueuedTime(currTime.minus(Duration.ofMinutes(30))))
.setEndingPosition(EventPosition.fromEnqueuedTime(currTime))
val reader = spark.read.format("eventhubs").options(ehConf.toMap).load()
var SIGNALS = reader
.select(get_json_object(($"body").cast("string"),"$.NUM").alias("NUM"),
get_json_object(($"body").cast("string"),"$.SIG1").alias("SIG1"),
get_json_object(($"body").cast("string"),"$.SIG2").alias("SIG2"),
get_json_object(($"body").cast("string"),"$.SIG3").alias("SIG3"),
get_json_object(($"body").cast("string"),"$.SIG4").alias("SIG4")
)
val SIGNALSFiltered = SIGNALS.filter(col("SIG1").isNotNull &&
col("SIG2").isNotNull && col("SIG3").isNotNull && col("SIG4").isNotNull)
在 SIGNALSFiltered 处获得的数据如下所示。
+-----------------+--------------------+--------------------+--------------------+--------------------+
| NUM| SIG1| SIG2| SIG3| SIG4|
+-----------------+--------------------+--------------------+--------------------+--------------------+
|XXXXX01|[{"TIME":15695605310...|[{"TIME":15695605310...|[{"TIME":15695605310...|[{"TIME":15695605310...|
|XXXXX02|[{"TIME":15695604780...|[{"TIME":15695604780...|[{"TIME":15695604780...|[{"TIME":15695604780...|
|XXXXX03|[{"TIME":15695605310...|[{"TIME":15695605310...|[{"TIME":15695605310...|[{"TIME":15695605310...|
|XXXXX04|[{"TIME":15695605310...|[{"TIME":15695605310...|[{"TIME":15695605310...|[{"TIME":15695605310...|
|XXXXX05|[{"TIME":15695605310...|[{"TIME":15695605310...|[{"TIME":15695605310...|[{"TIME":15695605310...|
|XXXXX06|[{"TIME":15695605340...|[{"TIME":15695605340...|[{"TIME":15695605340...|[{"TIME":15695605340...|
|XXXXX07|[{"TIME":15695605310...|[{"TIME":15695605310...|[{"TIME":15695605310...|[{"TIME":15695605310...|
|XXXXX08|[{"TIME":15695605310...|[{"TIME":15695605310...|[{"TIME":15695605310...|[{"TIME":15695605310...|
如果我们检查单个行的全部数据,将如下所示。
|XXXXX01|[{"TIME":1569560531000,"VALUE":3.7825},{"TIME":1569560475000,"VALUE":3.7812},{"TIME":1569560483000,"VALUE":3.7812},{"TIME":1569560491000,"VALUE":34.7875}]|
[{"TIME":1569560537000,"VALUE":3.7825},{"TIME":1569560481000,"VALUE":34.7825},{"TIME":1569560489000,"VALUE":34.7825},{"TIME":1569560497000,"VALUE":34.7825}]|
[{"TIME":1569560505000,"VALUE":34.7825},{"TIME":1569560513000,"VALUE":34.7825},{"TIME":1569560521000,"VALUE":34.7825},{"TIME":1569560527000,"VALUE":34.7825}]|
[{"TIME":1569560535000,"VALUE":34.7825},{"TIME":1569560479000,"VALUE":34.7825},{"TIME":1569560487000,"VALUE":34.7825}]
我只希望每列中有最高的TIME对,而不是整个TIME VALUE对。输出应如下所示。
+-----------------+-----------------------------+---------------------------------------+---------------------------------------+----------------------------------------+
| NUM| SIG1| SIG2| SIG3| SIG4|
+-----------------+-----------------------------+---------------------------------------+---------------------------------------+----------------------------------------+
|XXXXX01|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":4.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":5.7825}]|
|XXXXX02|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":6.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":7.7825}]|
|XXXXX03|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":9.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":8.7825}]|
在每列(SIG1,..... SIG4)中获得最高值后,只需更新其中所有列中最高的列的TIME值即可。
有什么方法可以如下转换基本数据集?列中的每个元素都应转换为新行。
+-----------------+-----------------------------+---------------------------------------+---------------------------------------+----------------------------------------+
| NUM| SIG1| SIG2| SIG3| SIG4|
+-----------------+-----------------------------+---------------------------------------+---------------------------------------+----------------------------------------+
|XXXXX01|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|
|XXXXX01|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|
|XXXXX01|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]| null |[{"TIME":1569560531000,"VALUE":3.7825}]|
|XXXXX01|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|
|XXXXX02|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|
|XXXXX02|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|
|XXXXX02|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|
|XXXXX02|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|[{"TIME":1569560531000,"VALUE":3.7825}]|```
Any leads or help is appreciated! Thanks in Advance.
答案 0 :(得分:1)
您必须编写一个用户定义的函数,如下所示。这将循环您的数据并获得最大时间值。 注意:UDF仅供参考,您可以根据要求进行更改
- 如何遍历每一行的每一列并获得最高的TIME-VALUE对?
scala> import org.apache.spark.sql.expressions.{UserDefinedFunction}
scala> def MaxTime:UserDefinedFunction = udf((json:String) => {
val pars = JSON.parseFull(json)
var output=""
pars.foreach{ x => val y = x.asInstanceOf[List[Any]]
var i = 1
var TimeMap = scala.collection.mutable.Map[String, Long]()
var ValueMap = scala.collection.mutable.Map[String, Double]()
y.foreach{ zz => val z = zz.asInstanceOf[Map[String,Double]]
TimeMap(i.toString) = z("TIME").toLong
ValueMap(i.toString) = z("VALUE")
i = i + 1
}
output = """[{"TIME" : """ + TimeMap.maxBy(_._2)._2.toString + """ ,"VALUE": """ + ValueMap(TimeMap.maxBy(_._2)._1) + """}]"""
}
output})
scala> SIGNALSFiltered.withColumn("SIG1", MaxTime(col("SIG1")).withColumn("SIG2", MaxTime(col("SIG2")))).withColumn("SIG3", MaxTime(col("SIG3"))).withColumn("SIG4", MaxTime(col("SIG4"))).show(false)
- 每列(SIG1,.... SIG4)达到最高值后,只需更新其中所有列中最高的列的TIME值即可。
编写与上述相同的UDF,并将完整的行作为参数传递。然后将每个列的值解析到Map中,并在所有列中获得最大值。