teradataml是否支持临时表的临时数据库,执行查询时创建的视图? 该如何使用?是否需要任何特定的配置?
答案 0 :(得分:0)
create_context(host=None, username=None, password=None, tdsqlengine=None, temp_database_name=None, logmech=None)
DESCRIPTION:
Creates a connection to the Teradata Vantage using the teradatasql + teradatasqlalchemy DBAPI and dialect combination.
Users can pass all required parameters (host, username, password) for establishing a connection to Vantage,
or pass a sqlalchemy engine to the tdsqlengine parameter to override the default DBAPI and dialect combination.
temp_database_name:
Optional Argument.
Specifies the temporary database name where temporary tables, views will be created.
Types: str
在运行以下示例之前,请确保temp_database_name参数中指定的数据库存在,并且相应的用户具有对具有Grant选项的函数的执行访问权限,并在具有Grant选项的输入表上选择访问权限。这可以通过运行:
grant execute function on <function name> to <user> with grant option;
grant select on <input table> to <temp db user> with grant option;
示例:
import teradataml
from teradataml.context.context import *
from teradataml.dataframe.dataframe import DataFrame
from teradataml.analytics.mle.XGBoost import XGBoost
from teradataml.analytics.mle.XGBoostPredict import XGBoostPredict
from teradataml.options.display import display
display.print_sqlmr_query = True
con = create_context(host="hostname", username="user", password="password",temp_database_name="mytemp")
housing_train_binary = DataFrame.from_table("housing_train_binary")
xgboostmodel = XGBoost(data=housing_train_binary,
id_column='sn',
formula=" homestyle ~ driveway + recroom + fullbase + gashw + airco + prefarea ",
num_boosted_trees=2,
loss_function='SOFTMAX',
prediction_type='CLASSIFICATION',
reg_lambda=1.0,
shrinkage_factor=0.1,
column_subsampling=1.0,
iter_num=10,
min_node_size=1,
max_depth=12,
variance=0.0,
seed=1,
data_sequence_column=['sn', 'homestyle']
)
xgboostmodel
housing_test_binary = DataFrame.from_table("housing_test_binary")
xgpredict = XGBoostPredict(newdata=housing_test_binary,
object=xgboostmodel,
object_order_column=['tree_id', 'iter', 'class_num'],
id_column='sn',
terms='homestyle',
num_boosted_trees=1
)
xgboostpredict