我使用以下代码:
import numpy as np
import math
import keras
from keras.models import Model, Sequential
from keras.layers import Input, Dense, Activation
from keras import regularizers
from keras import backend as K
a=1
def my_regularizer(inputs):
means=K.mean((inputs),axis=1)
return a*K.sum(means)**2
x_train=np.random.uniform(low=-1,high=1,size=(200,2))
x_test=np.random.uniform(low=-1,high=1,size=(20,2))
model=Sequential([
Dense(20,input_shape=(2,),activity_regularizer=my_regularizer),
Activation('tanh'),
Dense(2,),
Activation('linear')
])
model.compile(optimizer='adam',loss='mean_squared_error')
hist=model.fit(x_train,x_train,epochs=10,verbose=1,validation_data=(x_test,x_test))
print('MSE from Keras: ',hist.history['val_loss'][-1])
y_pred=model.predict(x_test)
print('Calculated MSE: ', np.mean((y_pred-x_test)**2))
输出为:
MSE from Keras: 0.1555381715297699
Calculated MSE: 0.12031101597786406
如果我删除activity_regularizer=my_regularizer
,则它们将更近,但仍将不同:
MSE from Keras: 0.09773887693881989
Calculated MSE: 0.09773887699599623
答案 0 :(得分:1)
嗯,答案很明确。您有一个正则化器。 正则化器的作用是在损失函数中添加一个项,因此具有较大损失是预期的行为。
对于其他小的区别,它只是精度。也许使用float 32 vs float 64,或者在具有不同算法的GPU x CPU上进行计算。我不会担心这种差异。