如何解决此错误?
>>> import tensorflow as tf
>>> tf.Session(config=tf.ConfigProto(log_device_placement=True))
2019-09-26 12:28:37.749941: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
2019-09-26 12:28:37.756897: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2993275000 Hz
2019-09-26 12:28:37.758229: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x5636b6113300 executing computations on platform Host. Devices:
2019-09-26 12:28:37.758293: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): <undefined>, <undefined>
2019-09-26 12:28:37.759374: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcuda.so.1
2019-09-26 12:28:37.782412: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties:
name: Quadro P4000 major: 6 minor: 1 memoryClockRate(GHz): 1.48
pciBusID: 0000:03:00.0
2019-09-26 12:28:37.782612: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudart.so.10.1
2019-09-26 12:28:37.784210: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcublas.so.10
2019-09-26 12:28:37.785800: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcufft.so.10
2019-09-26 12:28:37.786057: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcurand.so.10
2019-09-26 12:28:37.787715: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusolver.so.10
2019-09-26 12:28:37.788633: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusparse.so.10
2019-09-26 12:28:37.792187: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudnn.so.7
2019-09-26 12:28:37.793278: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1763] Adding visible gpu devices: 0
2019-09-26 12:28:37.793314: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudart.so.10.1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/joshij/yes/envs/TF/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 1570, in __init__
super(Session, self).__init__(target, graph, config=config)
File "/home/joshij/yes/envs/TF/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 693, in __init__
self._session = tf_session.TF_NewSessionRef(self._graph._c_graph, opts)
tensorflow.python.framework.errors_impl.InternalError: cudaGetDevice() failed. Status: CUDA driver version is insufficient for CUDA runtime version
>>>
nvidia-smi命令的输出
Thu Sep 26 12:53:39 2019
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 387.26 Driver Version: 387.26 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Quadro P4000 Off | 00000000:03:00.0 On | N/A |
| 46% 43C P0 29W / 105W | 1023MiB / 8080MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 677 G ...quest-channel-token=5147126485013694581 54MiB |
| 0 1900 G /usr/libexec/Xorg 214MiB |
| 0 2182 G /usr/libexec/Xorg 331MiB |
| 0 2416 G /usr/bin/gnome-shell 172MiB |
| 0 3154 G ...uest-channel-token=13678957064081588319 207MiB |
+-----------------------------------------------------------------------------+
答案 0 :(得分:2)
使用nvidia-smi
命令检查驱动程序版本。看来您的nvidia驱动程序版本已经过时。它应该大于410,因为您使用的是cuda10。请尝试升级驱动程序版本。