我为gradient boosting regression (GBR)
实现了简单的代码来预测one output
,并且效果很好,但是当我尝试预测two outputs
时,出现了如下所示的错误:
ValueError Traceback (most recent call last)
<ipython-input-5-bb1f191ee195> in <module>()
4 }
5 gradient_boosting_regressor = ensemble.GradientBoostingRegressor(**params)
----> 6 gradient_boosting_regressor.fit(train_data,train_targets)
7 # 'learning_rate': 0.01
D:\Anoconda\lib\site-packages\sklearn\ensemble\gradient_boosting.py in fit(self, X, y, sample_weight, monitor)
977
978 # Check input
--> 979 X, y = check_X_y(X, y, accept_sparse=['csr', 'csc', 'coo'], dtype=DTYPE)
980 n_samples, self.n_features_ = X.shape
981 if sample_weight is None:
D:\Anoconda\lib\site-packages\sklearn\utils\validation.py in check_X_y(X, y, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, warn_on_dtype, estimator)
576 dtype=None)
577 else:
--> 578 y = column_or_1d(y, warn=True)
579 _assert_all_finite(y)
580 if y_numeric and y.dtype.kind == 'O':
D:\Anoconda\lib\site-packages\sklearn\utils\validation.py in column_or_1d(y, warn)
612 return np.ravel(y)
613
--> 614 raise ValueError("bad input shape {0}".format(shape))
615
616
ValueError: bad input shape (22, 2)
我可以得到任何帮助或想法来使用two outputs
来预测GBR
吗?
我的尝试如下:
Data_ini = pd.read_excel('Data - 2output -Ra-in - angle.xlsx').iloc[:,:]
Data_ini_val = pd.read_excel('val - Ra-in -angle 12.xlsx').iloc[:,:]
train_data = Data_ini.iloc[:,:4]
train_targets = Data_ini.iloc[:,-2:]
val_data = Data_ini_val.iloc[:,:4]
val_targets = Data_ini_val.iloc[:,-2:]
params = {'n_estimators': 5000, 'max_depth': 4, 'min_samples_split': 2, 'min_samples_leaf': 2
}
gradient_boosting_regressor = ensemble.GradientBoostingRegressor(**params)
gradient_boosting_regressor.fit(train_data,train_targets)
答案 0 :(得分:1)
为此使用MultiOutputRegressor。
多目标回归
此策略包括为每个目标安装一个回归器。这是一个 扩展本机不支持的回归器的简单策略 多目标回归。
示例:
from sklearn.multioutput import MultiOutputRegressor
...
params = {'n_estimators': 5000, 'max_depth': 4, 'min_samples_split': 2, 'min_samples_leaf': 2
}
estimator = MultiOutputRegressor(ensemble.GradientBoostingRegressor(**params))
estimator.fit(train_data,train_targets)