我正在尝试训练一个拍摄15x15图像的模型,并将每个像素分为两类(1/0)。
这是我的损失函数:
smooth = 1
def tversky(y_true, y_pred):
y_true_pos = K.flatten(y_true)
y_pred_pos = K.flatten(y_pred)
true_pos = K.sum(y_true_pos * y_pred_pos)
false_neg = K.sum(y_true_pos * (1-y_pred_pos))
false_pos = K.sum((1-y_true_pos)*y_pred_pos)
alpha = 0.5
return (true_pos + smooth)/(true_pos + alpha*false_neg + (1-alpha)*false_pos + smooth)
def tversky_loss2(y_true, y_pred):
return 1 - tversky(y_true,y_pred)
这是模型:
input_image = layers.Input(shape=(size, size, 1))
b2 = layers.Conv2D(128, (3,3), padding='same', activation='relu')(input_image)
b2 = layers.Conv2D(128, (3,3), padding='same', activation='relu')(b2)
b2 = layers.Conv2D(128, (3,3), padding='same', activation='relu')(b2)
output = layers.Conv2D(1, (1,1), activation='sigmoid', padding='same')(b2)
model = models.Model(input_image, output)
model.compile(optimizer='adam', loss=tversky_loss2, metrics=['accuracy'])
左边的模型是输入,标签是中间一列,而预测在右边的列中始终为零:
培训表现很差:
Epoch 1/10
100/100 [==============================] - 4s 38ms/step - loss: 0.9269 - acc: 0.1825
Epoch 2/10
100/100 [==============================] - 3s 29ms/step - loss: 0.9277 - acc: 0.0238
Epoch 3/10
100/100 [==============================] - 3s 29ms/step - loss: 0.9276 - acc: 0.0239
Epoch 4/10
100/100 [==============================] - 3s 29ms/step - loss: 0.9270 - acc: 0.0241
Epoch 5/10
100/100 [==============================] - 3s 30ms/step - loss: 0.9274 - acc: 0.0240
Epoch 6/10
100/100 [==============================] - 3s 29ms/step - loss: 0.9269 - acc: 0.0242
Epoch 7/10
100/100 [==============================] - 3s 29ms/step - loss: 0.9270 - acc: 0.0241
Epoch 8/10
100/100 [==============================] - 3s 29ms/step - loss: 0.9271 - acc: 0.0241
Epoch 9/10
100/100 [==============================] - 3s 29ms/step - loss: 0.9276 - acc: 0.0239
Epoch 10/10
100/100 [==============================] - 3s 29ms/step - loss: 0.9266 - acc: 0.0242
答案 0 :(得分:1)
这听起来像一个非常不平衡的数据集,具有非常小的真实区域。确实,这可能很难训练。
您可能想增加alpha
来惩罚比误报更多的误报。无论如何,除非alpha足够大,否则从一开始就将模型完全变为负数是很正常的,因为这绝对是减少损失的好方法。
现在,关于Keras在这种损失中的工作方式存在概念上的错误。您需要将“样本”分开。否则,您将像所有图像都是一张图像一样计算损失。 (因此,具有很多正值的图像很有可能获得可分辨的结果,而带有很少正值的图像则没有这个效果,这将是一个很好的解决方案)
将损失修正为:
def tversky(y_true, y_pred):
y_true_pos = K.batch_flatten(y_true) #keep the batch dimension
y_pred_pos = K.batch_flatten(y_pred)
true_pos = K.sum(y_true_pos * y_pred_pos, axis=-1) #don't sum over the batch dimension
false_neg = K.sum(y_true_pos * (1-y_pred_pos), axis=-1)
false_pos = K.sum((1-y_true_pos)*y_pred_pos, axis=-1)
alpha = 0.5
return (true_pos + smooth)/(true_pos + alpha*false_neg + (1-alpha)*false_pos + smooth)
这样,您对每个图像都有一个单独的损失值,因此,具有许多正值的图像的退出不会影响具有少量正值的图像的结果。