TensorFlow具有称为 GradientTape 的功能,有点使用蒙特卡洛方法(?)获取梯度。
我正在尝试模拟ReLU的梯度,但这不适用于X的负一半。
#colab or ipython reset
%reset -f
#libs
import tensorflow as tf;
#init
tf.enable_eager_execution();
#code
x = tf.convert_to_tensor([-3,-2,-1,0,1,2,3],dtype=tf.float32);
with tf.GradientTape() as t:
t.watch(x);
y = fx = x; #THIS IS JUST THE POSITIVE HALF OF X
dy_dx = t.gradient(y,x);
print(dy_dx);
猜猜我必须在y = fx = x
行更改某些内容,例如添加if x<=0
,但不知道如何更改。
上面的代码打印出来:
tf.Tensor([1. 1. 1. 1. 1. 1. 1.], shape=(7,), dtype=float32)
但它希望是:
tf.Tensor([0. 0. 0. 0. 1. 1. 1.], shape=(7,), dtype=float32)
答案 0 :(得分:0)
下面的grad
函数模拟ReLU函数的条件X,但我不知道这是否是建议的建议方法:
#ipython
%reset -f
#libs
import tensorflow as tf;
import numpy as np;
#init
tf.enable_eager_execution();
#code
X = tf.convert_to_tensor([-3,-2,-1,0,1,2,3], dtype=tf.float32);
with tf.GradientTape() as T:
T.watch(X);
Y = Fx = X;
#end with
Dy_Dx = T.gradient(Y,X);
#print(Dy_Dx);
#get gradient of function Fx with conditional X
def grad(Y,At):
if (At<=0): return 0;
for I in range(len(X)):
if X[I].numpy()==At:
return Dy_Dx[I].numpy();
#end def
print(grad(Y,-3));
print(grad(Y,-2));
print(grad(Y,-1));
print(grad(Y,-0));
print(grad(Y,1));
print(grad(Y,2));
print(grad(Y,3));
print("\nDone.");
#eof