如何将实际成本(基于货币)添加到功能强大的车辆路线问题(或工具)中?

时间:2019-09-25 02:44:20

标签: python pandas algorithm or-tools vehicle-routing

我正在实现用于解决CVRP的Google或工具,其中每辆车都从以下链接开始从仓库(0)开始并返回到仓库(0):https://developers.google.com/optimization/routing/cvrp

程序计算每辆车的路线距离。我想通过从csv文件中读取数据(使用熊猫,或将其转换为json并从json读取)来增加实际成本(基于货币)。例如,一辆10公里以内的5t卡车的成本为4,500 $,则假设距离为9km,则成本为:4,500 $。

这是csv文件:

distance_km   5t       10t       15t       20t
----------------------------------------------
5             2,500    10,000    15,000    20,000
10            4,500    18,000    25,000    28,000
20            15,000   18,000    25,000    28,000

这是我的代码:

"""Capacited Vehicles Routing Problem (CVRP)."""

from __future__ import print_function
from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp

def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data['distance_matrix'] = [
        [
            0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354,
            468, 776, 662
        ],
        [
            548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674,
            1016, 868, 1210
        ],
        [
            776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164,
            1130, 788, 1552, 754
        ],
        [
            696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822,
            1164, 560, 1358
        ],
        [
            582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708,
            1050, 674, 1244
        ],
        [
            274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628,
            514, 1050, 708
        ],
        [
            502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856,
            514, 1278, 480
        ],
        [
            194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320,
            662, 742, 856
        ],
        [
            308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662,
            320, 1084, 514
        ],
        [
            194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388,
            274, 810, 468
        ],
        [
            536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764,
            730, 388, 1152, 354
        ],
        [
            502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114,
            308, 650, 274, 844
        ],
        [
            388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194,
            536, 388, 730
        ],
        [
            354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0,
            342, 422, 536
        ],
        [
            468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536,
            342, 0, 764, 194
        ],
        [
            776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274,
            388, 422, 764, 0, 798
        ],
        [
            662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730,
            536, 194, 798, 0
        ],
    ]
    data['demands'] = [0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8]
    data['vehicle_capacities'] = [15, 15, 15, 15]
    data['num_vehicles'] = 4
    data['depot'] = 0
    return data

def print_solution(data, manager, routing, assignment):
    """Prints assignment on console."""
    total_distance = 0
    total_load = 0
    for vehicle_id in range(data['num_vehicles']):
        index = routing.Start(vehicle_id)
        plan_output = 'Route for vehicle {}:\n'.format(vehicle_id)
        route_distance = 0
        route_load = 0
        while not routing.IsEnd(index):
            node_index = manager.IndexToNode(index)
            route_load += data['demands'][node_index]
            #plan_output += ' {0} Load({1}) -> '.format(node_index, route_load)
            previous_index = index
            index = assignment.Value(routing.NextVar(index))
            route_distance += routing.GetArcCostForVehicle(
                previous_index, index, vehicle_id)
        #plan_output += ' {0} Load({1})\n'.format(manager.IndexToNode(index),
                                                 route_load)
        plan_output += 'Distance of the route: {}m\n'.format(route_distance)
        plan_output += 'Load of the route: {}\n'.format(route_load)
        print(plan_output)
        total_distance += route_distance
        total_load += route_load
    print('Total distance of all routes: {}m'.format(total_distance))
    print('Total load of all routes: {}'.format(total_load))

def main():
    """Solve the CVRP problem."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']),
                                           data['num_vehicles'], data['depot'])

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)

    # Create and register a transit callback.
    def distance_callback(from_index, to_index):
        """Returns the distance between the two nodes."""
        # Convert from routing variable Index to distance matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data['distance_matrix'][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(distance_callback)

    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Add Capacity constraint.
    def demand_callback(from_index):
        """Returns the demand of the node."""
        # Convert from routing variable Index to demands NodeIndex.
        from_node = manager.IndexToNode(from_index)
        return data['demands'][from_node]

    demand_callback_index = routing.RegisterUnaryTransitCallback(
        demand_callback)
    routing.AddDimensionWithVehicleCapacity(
        demand_callback_index,
        0,  # null capacity slack
        data['vehicle_capacities'],  # vehicle maximum capacities
        True,  # start cumul to zero
        'Capacity')

    # Setting first solution heuristic.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)

    # Solve the problem.
    assignment = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if assignment:
        print_solution(data, manager, routing, assignment)

if __name__ == '__main__':
    main()

这是结果:

Route for vehicle 0:
Distance of the route: 2.192 km

Route for vehicle 1:
Distance of the route: 2.192 km

Route for vehicle 2:
Distance of the route: 1.324 km

Route for vehicle 3:
Distance of the route: 1.164 km

Total distance of all routes: 6.872 km

有4辆车,每辆载重量15t。因此,基于csv文件的成本,预期结果应为:

Route for vehicle 0:
Distance of the route: 2.192 km
Cost: 15,000

Route for vehicle 1:
Distance of the route: 2.192 km
Cost: 15,000

Route for vehicle 2:
Distance of the route: 1.324 km
Cost: 15,000

Route for vehicle 3:
Distance of the route: 1.164 km
Cost: 15,000

Total distance of all routes: 6.872 km
Total cost: 60,000

0 个答案:

没有答案