我的损失不断增加
我在做什么错了
import tensorflow as tf
import numpy as np
import pandas as pd
tf.version.VERSION
######################################################################################
##Create TEST DATA
######################################################################################
def testdata_create_csv(from_number=0,number_of_rows=1000,filename='houseprices.csv'):
f = open(filename,'w')
for i in np.arange(0,number_of_rows):
f.writelines(str(i) + ',' + str(i) + ',' + str(np.square(i) + i) + '\n')
f.close()
testdata_create_csv(from_number=11111,number_of_rows=10000,filename='houseprices.csv')
testdata_create_csv(from_number=0,number_of_rows=300,filename='evaluate.csv')
#######################################################################################
我用基本数据创建了csv文件。
##Import the data in dataframes
df_train = pd.read_csv('houseprices.csv',names=['a','b','target'])
df_evaluate = pd.read_csv('evaluate.csv',names=['a','b','target'])
我想对所有列定义使用Pandas数据框
##create Feature columns
feature_columns = []
feature_columns.append(tf.feature_column.numeric_column(key='a',dtype=tf.int64))
feature_columns.append(tf.feature_column.numeric_column(key='b',dtype=tf.int64))
试图使用from_tensor_slices创建数据集
##Define Input function
def input_fn(df,shuffle=False,batch_size=10):
features = df.copy()
labels = features.pop('target')
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
if shuffle:
# Shuffle, repeat, and batch the examples.
dataset = dataset.shuffle(10000).repeat().batch(batch_size)
dataset = dataset.batch(batch_size)
return dataset
仅以功能列定义模型,而没有更多信息
##Create Model
model = tf.estimator.LinearRegressor(feature_columns=feature_columns)
##Train Model
model.train(input_fn=lambda:input_fn(df_train))
##Evaluate Model
model.evaluate(input_fn=lambda:input_fn(df_evaluate))