将RDD转换为数据框

时间:2019-09-24 09:32:32

标签: scala dataframe apache-spark rdd

我是Spark / scala的新手。 我通过从多个路径加载数据在RDD下创建了一个。现在我想从中创建数据框以进行进一步的操作。 下面应该是数据框的架构

schema[UserId, EntityId, WebSessionId, ProductId]

rdd.foreach(println)

545456,5615615,DIKFH6545614561456,PR5454564656445454
875643,5485254,JHDSFJD543514KJKJ4
545456,5615615,DIKFH6545614561456,PR5454564656445454
545456,5615615,DIKFH6545614561456,PR5454564656445454
545456,5615615,DIKFH6545614561456,PR54545DSKJD541054
264264,3254564,MNXZCBMNABC5645SAD,PR5142545564542515
732543,8765984,UJHSG4240323545144
564574,6276832,KJDXSGFJFS2545DSAS

任何人都可以帮助我。...!!!

我已经尝试通过定义架构类并针对rdd进行映射来实现相同目的,但会出错

  

“ ArrayIndexOutOfBoundsException:3”

1 个答案:

答案 0 :(得分:1)

如果将列视为字符串,则可以使用以下内容创建:

import org.apache.spark.sql.Row

val rdd : RDD[Row] = ???

val df = spark.createDataFrame(rdd, StructType(Seq(
  StructField("userId", StringType, false),
  StructField("EntityId", StringType, false),
  StructField("WebSessionId", StringType, false),
  StructField("ProductId", StringType, true))))

请注意,您必须将RDD“映射”到RDD [Row],编译器才能使用“ createDataFrame”方法。对于缺少的字段,您可以在DataFrame架构中将这些列声明为可为空。

在您的示例中,您正在使用RDD方法 spark.sparkContext.textFile()。此方法返回RDD [String],这意味着RDD的每个元素都是一行。但是,您需要一个RDD [Row]。因此,您需要使用逗号分隔字符串,例如:

val list = 
 List("545456,5615615,DIKFH6545614561456,PR5454564656445454",
   "875643,5485254,JHDSFJD543514KJKJ4", 
   "545456,5615615,DIKFH6545614561456,PR5454564656445454", 
   "545456,5615615,DIKFH6545614561456,PR5454564656445454", 
   "545456,5615615,DIKFH6545614561456,PR54545DSKJD541054", 
   "264264,3254564,MNXZCBMNABC5645SAD,PR5142545564542515", 
"732543,8765984,UJHSG4240323545144","564574,6276832,KJDXSGFJFS2545DSAS")


val FilterReadClicks = spark.sparkContext.parallelize(list)

val rows: RDD[Row] = FilterReadClicks.map(line => line.split(",")).map { arr =>
  val array = Row.fromSeq(arr.foldLeft(List[Any]())((a, b) => b :: a))
  if(array.length == 4) 
    array
  else Row.fromSeq(array.toSeq.:+(""))
}

rows.foreach(el => println(el.toSeq))

val df = spark.createDataFrame(rows, StructType(Seq(
  StructField("userId", StringType, false),
  StructField("EntityId", StringType, false),
  StructField("WebSessionId", StringType, false),
  StructField("ProductId", StringType, true))))

df.show()

+------------------+------------------+------------+---------+
|            userId|          EntityId|WebSessionId|ProductId|
+------------------+------------------+------------+---------+
|PR5454564656445454|DIKFH6545614561456|     5615615|   545456|
|JHDSFJD543514KJKJ4|           5485254|      875643|         |
|PR5454564656445454|DIKFH6545614561456|     5615615|   545456|
|PR5454564656445454|DIKFH6545614561456|     5615615|   545456|
|PR54545DSKJD541054|DIKFH6545614561456|     5615615|   545456|
|PR5142545564542515|MNXZCBMNABC5645SAD|     3254564|   264264|
|UJHSG4240323545144|           8765984|      732543|         |
|KJDXSGFJFS2545DSAS|           6276832|      564574|         |
+------------------+------------------+------------+---------+

使用rdd行,您将可以创建数据框。