Pandas Group-By和Sum不创建新的数据框

时间:2019-09-23 16:27:08

标签: python pandas

我有一个数据框-

     TransactionDT  TransactionAmt  TransactionHour
   0    86400          68.5                 0
   1    86401          29.0                 1
   2    86469          59.0                 1
   3    86499          50.0                 2
   4    86506          50.0                 3

我想创建一个新的数据框,将TransactionAmtTransactionHour分组,如-

        Sum(TransactionAmt) TransactionHour
     0         68.5                 0
     1         88.0                 1        (sum of those with TransactionHour == 1)      
     2         50.0                 2
     3         50.0                 3

我写的代码是-

sliced_data2 = data.groupby(['TransactionHour'])['TransactionAmt'].sum()

但这只会给我Sum(TransactionHour)

4 个答案:

答案 0 :(得分:1)

sliced_data2 = data.groupby('TransactionHour',as_index = False).agg({"TransactionAmt" : "sum"})

答案 1 :(得分:1)

sliced_data2 = data.groupby(['TransactionHour'])['TransactionAmt'].agg('sum')

这将起作用

答案 2 :(得分:1)

raw_data = {'TransactionDT':      [86400, 86401, 86469, 86499, 86506],
            'TransactionAmt':     [68.5, 29.0, 59.0, 50.0, 50.0],
            'TransactionHour':    [0,1,1,2,3]}

df = pd.DataFrame(raw_data)

df.groupby('TransactionHour',as_index = False).agg({"TransactionAmt" : "sum"})

答案 3 :(得分:0)

您需要添加as_index = False`以确保您没有设置要分组为数据框新索引的列。

import pandas as pd
a = {'TransactionDT':[86400, 86401, 86469, 86499, 86506],'TransactionAmt':[68.5, 29.0, 59.0, 50.0, 50.0],'TransactionHour':[0,1,1,2,3]}
df = pd.DataFrame(a)
sliced_df = df.groupby(['TransactionHour'],as_index=False)['TransactionAmt'].sum())
print(sliced_df)

输出:

   TransactionHour  TransactionAmt
0                0            68.5
1                1            88.0
2                2            50.0
3                3            50.0