如何解决IndexError:列表索引超出范围

时间:2019-09-23 09:15:16

标签: python index-error

我正在尝试为ucf101数据集生成密集流,但我不断收到以下错误:

我在第68行中尝试将video_name.split('_')[1]更改为video_name.split('_')[0],已编译代码,但出现读取错误(请参见第70行)

这是我要运行的python代码,但我不断出现IndexError:列表索引超出范围:

import os,sys
import numpy as np
import cv2
from PIL import Image
from multiprocessing import Pool
import argparse
from IPython import embed #to debug
import skvideo.io
import scipy.misc


def ToImg(raw_flow,bound):
    '''
    this function scale the input pixels to 0-255 with bi-bound

    :param raw_flow: input raw pixel value (not in 0-255)
    :param bound: upper and lower bound (-bound, bound)
    :return: pixel value scale from 0 to 255
    '''
    flow=raw_flow
    flow[flow>bound]=bound
    flow[flow<-bound]=-bound
    flow-=-bound
    flow*=(255/float(2*bound))
    return flow

def save_flows(flows,image,save_dir,num,bound):
    '''
    To save the optical flow images and raw images
    :param flows: contains flow_x and flow_y
    :param image: raw image
    :param save_dir: save_dir name (always equal to the video id)
    :param num: the save id, which belongs one of the extracted frames
    :param bound: set the bi-bound to flow images
    :return: return 0
    '''
    #rescale to 0~255 with the bound setting
    flow_x=ToImg(flows[...,0],bound)
    flow_y=ToImg(flows[...,1],bound)
    if not os.path.exists(os.path.join(data_root,new_dir,save_dir)):
        os.makedirs(os.path.join(data_root,new_dir,save_dir))

    #save the image
    save_img=os.path.join(data_root,new_dir,save_dir,'img_{:05d}.jpg'.format(num))
    scipy.misc.imsave(save_img,image)

    #save the flows
    save_x=os.path.join(data_root,new_dir,save_dir,'flow_x_{:05d}.jpg'.format(num))
    save_y=os.path.join(data_root,new_dir,save_dir,'flow_y_{:05d}.jpg'.format(num))
    flow_x_img=Image.fromarray(flow_x)
    flow_y_img=Image.fromarray(flow_y)
    scipy.misc.imsave(save_x,flow_x_img)
    scipy.misc.imsave(save_y,flow_y_img)
    return 0

def dense_flow(augs):
    '''
    To extract dense_flow images
    :param augs:the detailed augments:
        video_name: the video name which is like: 'v_xxxxxxx',if different ,please have a modify.
        save_dir: the destination path's final direction name.
        step: num of frames between each two extracted frames
        bound: bi-bound parameter
    :return: no returns
    '''
    videos_root,video_name,save_dir,step,bound=augs
    #video_name,save_dir,step,bound=augs
    video_path=os.path.join(videos_root,video_name.split('_')[1],video_name)

    # provide two video-read methods: cv2.VideoCapture() and skvideo.io.vread(), both of which need ffmpeg support

    # videocapture=cv2.VideoCapture(video_path)
    # if not videocapture.isOpened():
    #     print 'Could not initialize capturing! ', video_name
    #     exit()
    try:
        videocapture=skvideo.io.vread(video_path)
    except:
        print('read error!'.format(video_name))
        return 0
    print (video_name)
    # if extract nothing, exit!
    if videocapture.sum()==0:
        print ('Could not initialize capturing',video_name)
        exit()
    len_frame=len(videocapture)
    frame_num=0
    image,prev_image,gray,prev_gray=None,None,None,None
    num0=0
    while True:
        #frame=videocapture.read()
        if num0>=len_frame:
            break
        frame=videocapture[num0]
        num0+=1
        if frame_num==0:
            image=np.zeros_like(frame)
            gray=np.zeros_like(frame)
            prev_gray=np.zeros_like(frame)
            prev_image=frame
            prev_gray=cv2.cvtColor(prev_image,cv2.COLOR_RGB2GRAY)
            frame_num+=1
            # to pass the out of stepped frames
            step_t=step
            while step_t>1:
                #frame=videocapture.read()
                num0+=1
                step_t-=1
            continue

        image=frame
        gray=cv2.cvtColor(image,cv2.COLOR_RGB2GRAY)
        frame_0=prev_gray
        frame_1=gray
        ##default choose the tvl1 algorithm
        dtvl1=cv2.createOptFlow_DualTVL1()
        flowDTVL1=dtvl1.calc(frame_0,frame_1,None)
        save_flows(flowDTVL1,image,save_dir,frame_num,bound) #this is to save flows and img.
        prev_gray=gray
        prev_image=image
        frame_num+=1
        # to pass the out of stepped frames
        step_t=step
        while step_t>1:
            #frame=videocapture.read()
            num0+=1
            step_t-=1


def get_video_list(videos_root):
    video_list=[]
    for cls_names in os.listdir(videos_root):
        cls_path=os.path.join(videos_root,cls_names)
        for video_ in os.listdir(cls_path):
            video_list.append(video_)
    video_list.sort()
    return video_list,len(video_list)



def parse_args():
    parser = argparse.ArgumentParser(description="densely extract the video frames and optical flows")
    parser.add_argument('--dataset',default='ucf101',type=str,help='set the dataset name, to find the data path')
    parser.add_argument('--data_root',default='D:/Clones/py-denseflow-master/video_classification/data',type=str)
    parser.add_argument('--new_dir',default='flows',type=str)
    parser.add_argument('--num_workers',default=4,type=int,help='num of workers to act multi-process')
    parser.add_argument('--step',default=1,type=int,help='gap frames')
    parser.add_argument('--bound',default=15,type=int,help='set the maximum of optical flow')
    parser.add_argument('--s_',default=0,type=int,help='start id')
    parser.add_argument('--e_',default=13320,type=int,help='end id')
    parser.add_argument('--mode',default='run',type=str,help='set \'run\' if debug done, otherwise, set debug')
    args = parser.parse_args()
    return args

if __name__ =='__main__':

    # example: if the data path not setted from args,just manually set them as belows.
    #dataset='ucf101'
    #data_root='/S2/MI/zqj/video_classification/data'
    #data_root=os.path.join(data_root,dataset)

    args=parse_args()
    data_root=os.path.join(args.data_root,args.dataset)
    videos_root=os.path.join(data_root,'videos')
    #print(videos_root)
    print (os.listdir(videos_root))

    #specify the augments
    num_workers=args.num_workers
    step=args.step
    bound=args.bound
    s_=args.s_
    e_=args.e_
    new_dir=args.new_dir
    mode=args.mode
    #get video list
    video_list,len_videos=get_video_list(videos_root)
    video_list=video_list[s_:e_]

    len_videos=min(e_-s_,13320-s_) # if we choose the ucf101
    print ('find {} videos.'.format(len_videos))
    flows_dirs=[video.split('.')[0] for video in video_list]
    print ('get videos list done! ')

    pool=Pool(num_workers)
    if mode=='run':
        pool.map(dense_flow,zip(videos_root , video_list,flows_dirs,[step]*len(video_list),[bound]*len(video_list)))
        #pool.map(dense_flow(zip(video_list,flows_dirs,[step]*len(video_list),[bound]*len(video_list)),videos_root))
    else: #mode=='debug
        dense_flow((videos_root, video_list[0],flows_dirs[0],step,bound))

我得到以下结果

runfile('D:/Clones/py-denseflow-master/denseflow.py', wdir='D:/Clones/py-denseflow-master')
['ApplyEyeMakeup', 'ApplyLipstick1', 'Archery', 'BabyCrawling', 'BalanceBeam', 'BandMarching', 'BaseballPitch', 'Basketball', 'BasketballDunk']
find 13320 videos.
get videos list done! 
Traceback (most recent call last):

  File "<ipython-input-8-703498eb5926>", line 1, in <module>
    runfile('D:/Clones/py-denseflow-master/denseflow.py', wdir='D:/Clones/py-denseflow-master')

  File "C:\Users\sancy\Anaconda3\lib\site-packages\spyder_kernels\customize\spydercustomize.py", line 827, in runfile
    execfile(filename, namespace)

  File "C:\Users\sancy\Anaconda3\lib\site-packages\spyder_kernels\customize\spydercustomize.py", line 110, in execfile
    exec(compile(f.read(), filename, 'exec'), namespace)

  File "D:/Clones/py-denseflow-master/denseflow.py", line 187, in <module>
    pool.map(dense_flow,zip(videos_root , video_list,flows_dirs,[step]*len(video_list),[bound]*len(video_list)))

  File "C:\Users\sancy\Anaconda3\lib\multiprocessing\pool.py", line 290, in map
    return self._map_async(func, iterable, mapstar, chunksize).get()

  File "C:\Users\sancy\Anaconda3\lib\multiprocessing\pool.py", line 683, in get
    raise self._value

IndexError: list index out of range

1 个答案:

答案 0 :(得分:0)

您正在尝试使用分隔符''拆分video_name,但显然字符串中没有''。因此,您会得到一个大小为1的列表,并且当您尝试访问video_name.split('_')[1]时会发生崩溃。

使用try来确定如果视频名称中没有'_'怎么办