我试图用python编写与此处相同的内容,但是我的代码无法产生良好的结果。我的目标是拍摄RGB图像,调整大小并转换为YCbCr,然后将背景像素值设置为0,手像素值设置为1。有人可以帮我使用PIL在python中编写此代码吗?
(我要复制的代码,在执行步骤3-6时遇到了一些麻烦)
function image_out = processSkinImage(filename)
Step 1...
% Read the image
original = imread(filename);
...
Step 2...
% Resize the image to 50x50
image_resized = imresize(original, scale);
[M N Z] = size(image_resized);
% Initialize the output image
image_out = zeros(height,width);
image_out = zeros(M,N);
...
Step 3...
% Convert the image from RGB to YCbCr
img_ycbcr = rgb2ycbcr(image_resized);
Cb = img_ycbcr(:,:,2);
Cr = img_ycbcr(:,:,3);
...
Step 4...
% Get the central color of the image
% Expected the hand to be in the central of the image
central_color = img_ycbcr(int32(M/2),int32(N/2),:);
Cb_Color = central_color(:,:,2);
Cr_Color = central_color(:,:,3);
% Set the range
Cb_Difference = 15;
Cr_Difference = 10;
...
Step 5...
% Detect skin pixels
[r,c,v] = find(Cb>=Cb_Color-Cr_Difference & Cb<=Cb_Color+Cb_Difference & Cr>=Cr_Color-Cr_Difference & Cr<=Cr_Color+Cr_Difference);
...
Step 6...
% Mark detected pixels
for i=1:match_count
image_out(r(i),c(i)) = 1;
end
end
那是我写的代码:
from PIL import Image as im
image = im.open('/Users/eitan/Desktop/eell.jpg')
image = image.resize((50,50), im.NEAREST)
grayScale = image.convert(mode='L')
width, height = grayScale.size
mid_pixel=grayScale.getpixel((width/2,height/2))
print (mid_pixel)
pixels = grayScale.load()
for i in range(grayScale.size[0]): # for every col:
for j in range(grayScale.size[1]): # For every row
if grayScale.getpixel((i,j)) < mid_pixel+40 and grayScale.getpixel((i,j)) > mid_pixel-15:
pixels[i,j] = 255
else:
pixels[i, j] = 0
grayScale.show()
This is an example of an image the code would get
And this is what the result should look like
如果有人可以帮助我用python编写此代码,那就太好了!
答案 0 :(得分:2)
您可以这样处理,在这里我使用HSV色彩空间而不是YCbCr色彩空间:
#!/usr/bin/env python3
import numpy as np
from PIL import Image
# Open image and convert to HSV colourspace
im = Image.open('hand.png').convert('HSV')
# Convert to Numpy array
ni = np.array(im)
# Get H, S and V of central pixel - consider taking a median of a larger area here
h,s,v = ni[int(ni.shape[0]/2), int(ni.shape[1]/2)]
# Separate each channel to own array
H = ni[:,:,0]
S = ni[:,:,1]
V = ni[:,:,2]
# Permissible +/- tolerances on each channel
deltah = 20
deltas = 80
deltav = 50
# Make masks of pixels with acceptable H, S and V
hmask = np.where((H > h-deltah) & (H < h+deltah), 255, 0).astype(np.uint8)
smask = np.where((S > s-deltas) & (S < s+deltas), 255, 0).astype(np.uint8)
vmask = np.where((V > v-deltav) & (V < v+deltav), 255, 0).astype(np.uint8)
# Save as images for inspection
Image.fromarray(hmask).save('hmask.png')
Image.fromarray(smask).save('smask.png')
Image.fromarray(vmask).save('vmask.png')
所得的色相蒙版:
产生的饱和度蒙版:
结果值掩码:
然后,您可以将这些遮罩进行AND或OR运算,以得到更加复杂的遮罩组合。