如何更正值错误:未知标签类型“连续”

时间:2019-09-21 17:45:02

标签: python-3.x valueerror continuous

我遇到价值错误,不知道如何解决。

from sklearn.ensemble import RandomForestClassifier
forest=RandomForestClassifier(n_estimators=50,
                         criterion='entropy',
                         min_samples_split=20,
                         min_samples_leaf=15,
                         max_features="sqrt",
                         max_leaf_nodes=12,
                         random_state=0)

forest.fit(X_train, y_train)
print("Acurracy on Training Set: {:.3f}".format(forest.score(X_train, 
y_train)))
print("Accuracy on Test Set: {:.3f}".format(forest.score(X_test, 
y_test)))

import numpy as np
import matplotlib.pyplot as plt
importances=forest.feature_importances_

这是导致错误的行。     ---> 17 forest.fit(X_train,y_train)

这是整个错误消息:             ValueError追溯(最新      呼叫         持续)          在          15 random_state = 0)          16     ---> 17 forest.fit(X_train,y_train)          18份印刷品(“培训套现”:     {:.3f}“。format(forest.score(X_train,         y_train)))          19 print(“ Test Set上的精度:{:. 3f}”。format(forest.score(X_test,     y_test)))

~\Anaconda3\lib\site-packages\sklearn\ensemble\forest.py in fit(self, X, y, 
sample_weight)
    273         self.n_outputs_ = y.shape[1]
    274 
--> 275         y, expanded_class_weight = self._validate_y_class_weight(y)
    276 
    277         if getattr(y, "dtype", None) != DOUBLE or not 
y.flags.contiguous:

~\Anaconda3\lib\site-packages\sklearn\ensemble\forest.py in 
_validate_y_class_weight(self, y)
    476 
    477     def _validate_y_class_weight(self, y):
--> 478         check_classification_targets(y)
    479 
    480         y = np.copy(y)

~\Anaconda3\lib\site-packages\sklearn\utils\multiclass.py in 
check_classification_targets(y)
    167     if y_type not in ['binary', 'multiclass', 'multiclass- 
multioutput',
    168                       'multilabel-indicator', 'multilabel- 
sequences']:
--> 169         raise ValueError("Unknown label type: %r" % y_type)
    170 
    171 


ValueError: Unknown label type: 'continuous'

1 个答案:

答案 0 :(得分:-1)

问题似乎来自forest.fit(X_train, y_train),请检查传递给fit方法的参数,因为它们的类型似乎错误。