在训练10,000个手写字符的图像数据库期间,我在Goggle colab中面临缓慢。我在kaggle上进行了类似的培训,其中每个纪元都花了84秒,而在谷歌合作实验室中,每个纪元花费了超过350秒。代码类似..
from google.colab import drive
# This will prompt for authorization.
drive.mount('/content/drive')
import numpy as np
import keras
from keras import backend as k
from keras.models import Sequential
from keras.layers import Activation
from keras.layers.core import Dense,Flatten
from keras.optimizers import Adam
from keras.metrics import categorical_crossentropy
from keras.preprocessing.image import ImageDataGenerator
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import *
from matplotlib import pyplot as plt
from sklearn.metrics import confusion_matrix
import itertools
import matplotlib.pyplot as plt
%matplotlib inline
from keras.models import Model
from keras.preprocessing import image
from keras.applications import imagenet_utils
from keras.applications.resnet import preprocess_input
from keras.preprocessing import image
from keras.models import Model
from keras.models import model_from_json
from keras.layers import Input
train_path='/content/only_jukto/train'
valid_path='/content/only_jukto/valid'
test_path='/content/only_jukto/test'
train_batches=ImageDataGenerator(preprocessing_function=keras.applications.resnet50.preprocess_input).flow_from_directory(train_path,target_size=(224,224),batch_size=32)
valid_batches= ImageDataGenerator(preprocessing_function=keras.applications.resnet50.preprocess_input).flow_from_directory(valid_path,target_size=(224,224),batch_size=32)
test_batches= ImageDataGenerator(preprocessing_function=keras.applications.resnet50.preprocess_input).flow_from_directory(test_path,target_size=(224,224),batch_size=32)
mobile = keras.applications.resnet.ResNet50(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000)
x = mobile.layers[-2].output
predictions = Dense(52,activation='softmax')(x)
model = Model(inputs=mobile.input,outputs=predictions)
model.summary()
model.compile(Adam(lr=0.001),loss='categorical_crossentropy',metrics=['accuracy'])
model.fit_generator(train_batches,steps_per_epoch=337,validation_data=valid_batches,validation_steps = 113,epochs = 30 , verbose=1)
这是代码...我也面临着一些我在kaggle内核中找不到的贬损警告。有人可以帮我吗?