我已经在python中创建了数学模型。我想为我的模型制作一个独立的python可执行文件。 python脚本使用了多个python库,例如numpy,pandas,pymc3。我试图使用pyinstaller和auto-py-to-exe来制作python可执行文件。在这两种情况下,它都无法创建可执行文件。导入pymc3模块(theano库)时发生错误。我的主要模型取决于pymc3模块。我无法绕过此模块。有人可以帮我解决这个问题吗?
这是我执行.exe文件时收到的错误消息,
WARNING (theano.tensor.blas): Using NumPy C-API based implementation for BLAS functions.
c:\python\lib\site-packages\PyInstaller\loader\pyimod03_importers.py:621: MatplotlibDeprecationWarning:
The MATPLOTLIBDATA environment variable was deprecated in Matplotlib 3.1 and will be removed in 3.3.
exec(bytecode, module.__dict__)
Traceback (most recent call last):
File "sample.py", line 46, in <module>
File "<frozen importlib._bootstrap>", line 983, in _find_and_load
File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked
File "<frozen importlib._bootstrap>", line 677, in _load_unlocked
File "c:\python\lib\site-packages\PyInstaller\loader\pyimod03_importers.py", line 621, in exec_module
exec(bytecode, module.__dict__)
File "site-packages\pymc3\__init__.py", line 11, in <module>
File "<frozen importlib._bootstrap>", line 983, in _find_and_load
File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked
File "<frozen importlib._bootstrap>", line 677, in _load_unlocked
File "c:\python\lib\site-packages\PyInstaller\loader\pyimod03_importers.py", line 621, in exec_module
exec(bytecode, module.__dict__)
File "site-packages\pymc3\stats.py", line 20, in <module>
File "site-packages\pkg_resources\__init__.py", line 481, in get_distribution
File "site-packages\pkg_resources\__init__.py", line 357, in get_provider
File "site-packages\pkg_resources\__init__.py", line 900, in require
File "site-packages\pkg_resources\__init__.py", line 786, in resolve
pkg_resources.DistributionNotFound: The 'scipy' distribution was not found and is required by the application
[13796] Failed to execute script sample
这是python脚本,
class modelFit:
# Initialises the attributes
def __init__(self, x, y):
self.x = x
self.y = y
# Performs the Bayes estimation
def coeffEstimation(self):
X = np.array(self.x)
Y = np.array(self.y)
with pm.Model() as linearRegModel:
# Define priors
#regCoeff = pm.HalfNormal('regCoeff', sd = 20, shape=X.shape[1])
regCoeff = pm.Uniform('regCoeff', lower = 0, upper = 100, shape=X.shape[1])
# Standard deviation
sigma = pm.HalfNormal('sigma', sd = 5)
# Estimate of mean
mean = pm.math.dot(X, regCoeff)
# Likelihood estimate
likelihood = pm.Normal('Y_estimated', mu = mean, sd = sigma, observed = Y)
# Sampler
step = pm.NUTS()
# Posterior distribution
linearTrace = pm.sample(draws = 500, chains = 1,
tune = 500, nuts_kwargs=dict(target_accept=0.95))
with open('Summary.txt', 'w') as f:
print(pm.summary(linearTrace).round(3), file=f)
diverging = linearTrace['diverging']
print('Number of Divergent Chains: {}'.format(diverging.nonzero()[0].size), file=f)
divergingPer = diverging.nonzero()[0].size / len(linearTrace) * 100
print('Percentage of Divergent Chains: {:.1f}'.format(divergingPer), file=f)
print('Bayesian Inference Done! Exporting the results, Please hold on!')
return(linearTrace)
import theano.tensor.shared_randomstreams
import scipy
import pymc3 as pm
import numpy as np
import pandas as pd
dataLocation = './input/'
inputData = pd.read_excel(dataLocation + 'input.xlsx')
sizeInputData = inputData.shape
x = inputData.iloc[:,1:sizeInputData[1]]
y = inputData.iloc[:,0]
# Executes the Bayes method
linReg = modelFit(x, y)
regTrace = linReg.coeffEstimation()