我有以下情况。
+--------------------+
| p|
+--------------------+
|[0.99998416412131...|
|[0.99998416412131...|
|[0.99998416412131...|
|[0.99998416412131...|
|[0.99998416412131...|
+--------------------+
这是Row()对象的列表。
[Row(p=[0.9999841641213133, 5.975696995141415e-06, 1.3699249952858219e-06, 1.4817184271708493e-06, 2.9022272149130313e-07, 1.4883436072406822e-06, 2.2234697862933896e-06, 3.006502154124559e-06]),
Row(p=[0.9999841641213133, 5.975696995141415e-06, 1.3699249952858219e-06, 1.4817184271708493e-06, 2.9022272149130313e-07, 1.4883436072406822e-06, 2.2234697862933896e-06, 3.006502154124559e-06]),
Row(p=[0.9999841641213133, 5.975696995141415e-06, 1.3699249952858219e-06, 1.4817184271708493e-06, 2.9022272149130313e-07, 1.4883436072406822e-06, 2.2234697862933896e-06, 3.006502154124559e-06]),
Row(p=[0.9999841641213133, 5.975696995141415e-06, 1.3699249952858219e-06, 1.4817184271708493e-06, 2.9022272149130313e-07, 1.4883436072406822e-06, 2.2234697862933896e-06, 3.006502154124559e-06]),
Row(p=[0.9999841641213133, 5.975696995141415e-06, 1.3699249952858219e-06, 1.4817184271708493e-06, 2.9022272149130313e-07, 1.4883436072406822e-06, 2.2234697862933896e-06, 3.006502154124559e-06])]
我正在尝试将此列过滤为名为“ maxClass”的新列,该列为所有行返回np.argmax(row)[0]。下面是我的最佳选择,但我根本无法获得使用此软件包的语言。
def f(row):
return np.argmax(np.array(row.p))[0]
results=probs.rdd.map(lambda x:f(x))
results
答案 0 :(得分:1)
为了完整起见,如本文所建议,这是不使用UDF和numpy的解决方案。而是使用array_position
和array_max
:
import pyspark.sql.functions as f
df = spark.createDataFrame([
([0.9999841641213133, 5.975696995141415e-06, 1.3699249952858219e-06, 1.4817184271708493e-06, 2.9022272149130313e-07, 1.4883436072406822e-06, 2.2234697862933896e-06, 3.006502154124559e-06],),
([0.9999841641213134, 0.99999, 1.3699249952858219e-06, 1.4817184271708493e-06, 2.9022272149130313e-07, 1.4883436072406822e-06, 2.2234697862933896e-06, 3.006502154124559e-06],),
([0.9999841641213135, 5.975696995141415e-06, 1.3699249952858219e-06, 1.4817184271708493e-06, 2.9022272149130313e-07, 1.4883436072406822e-06, 2.2234697862933896e-06, 3.006502154124559e-06],)]) \
.toDF("p")
df.select(
f.expr('array_position(cast(p as array<decimal(16, 16)>), cast(array_max(p) as decimal(16, 16))) - 1').alias("max_indx")
).show()
# +--------+
# |max_indx|
# +--------+
# | 0|
# | 1|
# | 0|
# +--------+