我在尝试将CSV分割为CSV文件的最小值时遇到问题,因此每个文件中都只有唯一的ID
通过运行
count = df['id'].value_counts().max()
我已经知道应该创建的csv文件数量(file1,file2,file3,file4)
我的预期结果应该是
file1
person_name id Total Paid Date No
Deniss 55227 1191,75 0,00 21/08/2019 15/06/2018
RINALDS 56002 169,00 0,00 21/08/2019 15/06/2018
OLGA 54689 812,90 0,00 21/08/2019 15/05/2018
file2
person_name id Total Paid Date No
Deniss 55227 1191,75 0,00 21/08/2019 20180615
RINALDS 56002 169,00 0,00 21/08/2019 20180615
OLGA 54689 812,90 0,00 21/08/2019 20180515
file3
person_name id Total Paid Date No
Deniss 55227 1191,75 0,00 21/08/2019 20180613
RINALDS 56002 169,00 0,00 21/08/2019 20180614
file4
person_name id Total Paid Date No
Deniss 55227 1191,75 0,00 21/08/2019 20180612
答案 0 :(得分:1)
将GroupBy.cumcount
用于计数器系列,然后循环写入文件:
g = df.groupby('id').cumcount() + 1
for i, df in df.groupby(g):
df.to_csv(f'file{i}.csv', index=False)
使用示例数据进行测试:
for i, df in df.groupby(g):
print (df)
person_name id Total Paid Date No
0 Deniss 55227 1191,75 0,00 21/08/2019 15/06/2018
4 RINALDS 56002 169,00 0,00 21/08/2019 15/06/2018
7 OLGA 54689 812,90 0,00 21/08/2019 15/05/2018
person_name id Total Paid Date No
1 Deniss 55227 1191,75 0,00 21/08/2019 20180615
5 RINALDS 56002 169,00 0,00 21/08/2019 20180615
8 OLGA 54689 812,90 0,00 21/08/2019 20180515
person_name id Total Paid Date No
2 Deniss 55227 1191,75 0,00 21/08/2019 20180613
6 RINALDS 56002 169,00 0,00 21/08/2019 20180614
person_name id Total Paid Date No
3 Deniss 55227 1191,75 0,00 21/08/2019 20180612