Mongo可以汇总以下数据:
{price: 100, name: 'itemA', date: '2019-09-09 00:01:10.534Z'},
{price: 150, name: 'itemA', date: '2019-08-09 00:01:10.534Z'},
{price: 50, name: 'itemA', date: '2019-07-09 00:01:10.534Z'},
{price: 50, name: 'itemA', date: '2019-07-06 00:01:10.534Z'},
{price: 200, name: 'itemB', date: '2019-09-09 00:01:10.534Z'}
进入如下所示的文档:
[
{
'name': 'itemA',
'last_7_days': {
//sale stats from the last 7 days
'min': 100,
'max': 100,
'avg': 100,
'volume': 1
},
'last_30_days': {
//sale stats from the last 30 days
'min': 100,
'max': 150,
'avg': 125,
'volume': 2
},
'last_90_days': {
//sale stats from the last 90 days
'min': 50,
'max': 150,
'avg': 87.5,
'volume': 4
},
'sales': [
//show recent sales (limit 3)
{
'price': 100,
'date': '2019-09-09 00:01:10.534Z'
},
{
'price': 150,
'date': '2019-08-09 00:01:10.534Z'
},
{
'price': 50,
'date': '2019-07-09 00:01:10.534Z'
}
]
},
{
'name': 'itemB',
'last_7_days': {
//sale stats from the last 7 days
'min': 200,
'max': 200,
'avg': 200,
'volume': 1
},
'last_30_days': {
//sale stats from the last 30 days
'min': null,
'max': null,
'avg': null,
'volume': 0
},
'last_90_days': {
//sale stats from the last 90 days
'min': null,
'max': null,
'avg': null,
'volume': 0
},
'sales': [
//show recent sales (limit 3)
{
'price': 200,
'date': '2019-09-09 00:01:10.534Z'
}
]
}
]
我主要使用$facet
进行了尝试,但是到目前为止,我还无法合并代码。只需一个查询,mongo甚至可以输出此输出吗?
任何想法如何进行我提到的输出?任何帮助将不胜感激。
答案 0 :(得分:0)
我们可以在不使用$facet
的情况下执行此操作。想法是标记每个文档是否存在于过去7天,30天和90天,然后根据分配的标签对它们进行分组。
以下是示例:
db.collection.aggregate([
{
$addFields:{
"info":{
$let:{
"vars":{
"time_difference":{
$subtract:[
new Date(),
{
$toDate:"$date"
}
]
}
},
"in":{
"tags":[
{
$cond:[
{
$lte:["$$time_difference",604800000]
},
"last_7_days",
""
]
},
{
$cond:[
{
$lte:["$$time_difference",2592000000]
},
"last_30_days",
""
]
},
{
$cond:[
{
$lte:["$$time_difference",7776000000]
},
"last_90_days",
""
]
}
]
}
}
}
}
},
{
$unwind:"$info.tags"
},
{
$match:{
"info.tags":{
$ne:""
}
}
},
{
$group:{
"_id":{
"name":"$name",
"tag":"$info.tags"
},
"name":{
$first:"$name"
},
"tag":{
$first:"$info.tags"
},
"max":{
$max:"$price"
},
"min":{
$min:"$price"
},
"avg":{
$avg:"$price"
},
"volume":{
$sum:1
}
}
},
{
$group:{
"_id":"$name",
"name":{
$first:"$name"
},
"info":{
$push:{
"k":"$tag",
"v":{
"max" : "$max",
"min" : "$min",
"avg" : "$avg",
"volume" : "$volume"
}
}
}
}
},
{
$addFields:{
"info":{
$arrayToObject:"$info"
}
}
},
{
$addFields:{
"info.name":"$name"
}
},
{
$replaceRoot:{
"newRoot":"$info"
}
}
]).pretty()
数据集:
{
"_id" : ObjectId("5d7715b7f04b490307453d02"),
"price" : 100,
"name" : "itemA",
"date" : "2019-09-09T00:01:10.534Z"
}
{
"_id" : ObjectId("5d7715b7f04b490307453d03"),
"price" : 150,
"name" : "itemA",
"date" : "2019-08-09T00:01:10.534Z"
}
{
"_id" : ObjectId("5d7715b7f04b490307453d04"),
"price" : 50,
"name" : "itemA",
"date" : "2019-07-09T00:01:10.534Z"
}
{
"_id" : ObjectId("5d7715b7f04b490307453d05"),
"price" : 50,
"name" : "itemA",
"date" : "2019-07-06T00:01:10.534Z"
}
{
"_id" : ObjectId("5d7715b7f04b490307453d06"),
"price" : 200,
"name" : "itemB",
"date" : "2019-09-09T00:01:10.534Z"
}
输出:
{
"last_7_days" : {
"max" : 100,
"min" : 100,
"avg" : 100,
"volume" : 1
},
"last_30_days" : {
"max" : 100,
"min" : 100,
"avg" : 100,
"volume" : 1
},
"last_90_days" : {
"max" : 150,
"min" : 50,
"avg" : 87.5,
"volume" : 4
},
"name" : "itemA"
}
{
"last_30_days" : {
"max" : 200,
"min" : 200,
"avg" : 200,
"volume" : 1
},
"last_90_days" : {
"max" : 200,
"min" : 200,
"avg" : 200,
"volume" : 1
},
"last_7_days" : {
"max" : 200,
"min" : 200,
"avg" : 200,
"volume" : 1
},
"name" : "itemB"
}
查询分析:
date
字段中获取的时间之间的差异分配的。如果差异小于6048000000毫秒。 (相当于7天的毫秒数)表示文档位于最近7天之内,依此类推。[name, tag]
进行分组并计算最小,最大,平均和体积。name
进行分组,并将所有标签和相关数据作为键值对推入数组