我的数据集包含1000个用户的10天数据。我正在为每个用户培训和测试数据,以提高预测准确性。在下面的代码中,每个用户都有自己的模型。如何为所有用户创建全局模型(一个模型)。每个用户有96个测试数据,重新培训用于培训。由于位置点是分类的,因此实现了一种热编码来对位置点进行编码。
list = list_users[:100]
with open("accuracy_Lstm.csv","w") as f:
f.write('user,LSTM \n')
for user in list:
user_data = newdataframe[newdataframe.user==user]
encoded=encoding(user_data) #One hot encoding
X_train = []
y_train = []
for i in range(1, len(encoded)-96):
X_train.append(encoded[i-1])
y_train.append(encoded[i])
X_train, y_train = np.array(X_train), np.array(y_train)
X_test = encoded[-192:-96,:]
X_true = encoded[-96:,:]
X_trainL=X_train.reshape(X_train.shape[0],1,X_train.shape[1])
time_steps = 1
#Lstm
model = Sequential()
model.add(LSTM(X_train.shape[1], input_shape=(time_steps,X_train.shape[1]), activation='relu'))
model.add(Dense(X_train.shape[1]))
model.compile(loss='mse', optimizer='adam')
model.fit(X_trainL, y_train, batch_size=96, epochs=100, verbose =1)
model.summary()
X_testL=X_test.reshape(X_test.shape[0],1,X_test.shape[1])
pedL =one_hot_decode(model.predict(X_testL))
true=one_hot_decode(X_true)
try:
accuracy = ((sum(x == y for x, y in zip(pedL, true)))/(len(pedL)))*100
except ZeroDivisionError:
accuracy = 0
f.write(' %d, %f \n'%(user, accuracy))
如何为所有用户创建一个模型?