我正在做PCA,有10个组件。我想根据组的类型来绘制前三个组件和颜色。
from mpl_toolkits.mplot3d import Axes3D
df=pd.DataFrame(np.random.rand(30,20))
grp=round(pd.DataFrame(np.random.rand(30)*10),0)
df['grp']=grp
fig = plt.figure(figsize=(12, 9))
ax = Axes3D(fig)
y = df.iloc[:,1]
x = df.iloc[:,0]
z = df.iloc[:,2]
c = df['grp']
ax.scatter(x,y,z, c=c, cmap='coolwarm')
plt.title('First 3 Principal Components')
ax.set_ylabel('PC2')
ax.set_xlabel('PC1')
ax.set_zlabel('PC3')
plt.legend()
这行得通,但不幸的是它没有显示图例,我也不相信所有可能的组。
任何建议
答案 0 :(得分:0)
您可以尝试添加颜色栏:
# note the difference
cb = ax.scatter(x,y,z, c=c, cmap='coolwarm')
plt.title('First 3 Principal Components')
ax.set_ylabel('PC2')
ax.set_xlabel('PC1')
ax.set_zlabel('PC3')
# and here we add a colorbar
plt.colorbar(cb)
plt.legend()
答案 1 :(得分:0)
检出大熊猫groupby
,将数据按组分组并分别绘制组:
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(figsize=(12, 9))
ax = Axes3D(fig)
for grp_name, grp_idx in df.groupby('grp').groups.items():
y = df.iloc[grp_idx,1]
x = df.iloc[grp_idx,0]
z = df.iloc[grp_idx,2]
ax.scatter(x,y,z, label=grp_name) # this way you can control color/marker/size of each group freely
ax.scatter(*df.iloc[grp_idx, [0, 1, 2]].T.values, label=grp_name) # if you want to do everything in one line, lol
ax.legend()