我正在尝试使用matplotlib显示混淆矩阵。 混淆矩阵应该显示我的分类器结果的预测标签与真实标签。
不幸的是,该图显示不正确。混淆矩阵的第一行和最后一行被压缩,难以阅读。
import matplotlib.pyplot as plt
from sklearn.utils.multiclass import unique_labels
from sklearn import preprocessing
from sklearn.metrics import confusion_matrix
def plot_confusion_matrix(y_true, y_pred, classes,
normalize=False,
title=None,
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if not title:
if normalize:
title = 'Normalized confusion matrix'
else:
title = 'Confusion matrix, without normalization'
cm = confusion_matrix(y_true, y_pred)
le = preprocessing.LabelEncoder()
le.fit(y_true)
classes = le.classes_
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
fig, ax = plt.subplots()
im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
ax.figure.colorbar(im, ax=ax)
# We want to show all ticks...
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
# ... and label them with the respective list entries
xticklabels=classes, yticklabels=classes,
title=title,
ylabel='True label',
xlabel='Predicted label')
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")
fig.tight_layout()
return ax
np.set_printoptions(precision=2)
# Plot normalized confusion matrix
plot_confusion_matrix(y_test, y_pred, classes=['joy', 'guilt', 'sadness', 'anger', 'fear', 'disgust', 'shame'], normalize=True,
title='Normalized confusion matrix')
plt.show()
结果如下:
我试图调整数字的大小,但没有成功。