如何基于列名将数据框拆分为多个数据框

时间:2019-09-05 09:35:16

标签: python python-3.x pandas dataframe dictionary

我的数据框如下,

 _dict = {'t_head': ['H1', 'H2', 'H3', 'H4', 'H5','H6'], 
            'r_head': ['Revenue', 'Revenue', 'Income', 'Income', 'Cash', 'Expenses'], 
            '3ME__ Q219': [159.9, '', 45.6, '', '', ''], 
            '3ME__ Q218': [112.3, '', 27.2, '', '', ''], 
            '3ME__ Q119': [121.0, '', 23.1, '', '', ''], 
            '3ME__ Q18': [85.7, '', 15.3, '', '', ''], 
            '3ME__ Q418': [160.5, '', 51.1, '', '', ''], 
            '9ME__ Q417': [102.6, '', 24.2, '', '', ''], 
            '9ME__ Q318': [118.8, '', 30.2, '', '', ''], 
            '9ME__ Q317': [79.4, '', 15.3, '', '', ''], 
            '6ME__ Q219': ['', 280.9, '', 68.7, '', ''], 
            '6ME__ Q218': ['', 198.0, '', 42.6, '', ''], 
            'Q219': ['', '', '', '', 1305, 1239], 
            'Q418': ['', '', '', '', 2072, 1117]
            }
df = pd.DataFrame.from_dict(_dict)
print(df)  

  t_head    r_head 3ME__ Q219 3ME__ Q218 3ME__ Q119 3ME__ Q18 3ME__ Q418 9ME__ Q417 9ME__ Q318 9ME__ Q317 6ME__ Q219 6ME__ Q218  Q219  Q418
0     H1   Revenue      159.9      112.3        121      85.7      160.5      102.6      118.8       79.4                                  
1     H2   Revenue                                                                                             280.9        198            
2     H3    Income       45.6       27.2       23.1      15.3       51.1       24.2       30.2       15.3                                  
3     H4    Income                                                                                              68.7       42.6            
4     H5      Cash                                                                                                               1305  2072
5     H6  Expenses                                                                                                               1239  1117

我想基于列标题将此数据帧拆分为多个dtaframe。在这里,列标题可以3ME__6ME__9ME__所有/任何/无一个可以出现)或其他值开头。我希望所有以3ME__开头的列都在一个数据帧中,6ME__到另一个数据帧...等等。其余的全部放在第四个数据框中。
我尝试过的如下,

df1 = df.filter(regex='3ME__')
if not df1.empty:
    df1 = df1[df1.iloc[:,0].astype(bool)]
df2 = df.filter(regex='6ME__')
if not df2.empty:
    df2 = df2[df2.iloc[:,0].astype(bool)]
df3 = df.filter(regex='9ME__')
if not df3.empty:
    df3 = df3[df3.iloc[:,0].astype(bool)]

在这里,我可以过滤出以3ME__6ME__9ME__开头的列名称到不同的数据框,但是无法将其余列标题归为一个数据框

1。)如何将其余的列标题保存到一个数据框?
2.)有没有更简单的方法可以将键和数据帧作为值拆分成字典?

请帮助。

4 个答案:

答案 0 :(得分:3)

我将执行以下操作:

m=df.set_index(['t_head','r_head']) #set the 2 columns as index

然后在第1轴上拆分列并进行分组,然后对每组进行字典操作

d={f'df_{i}': g for i, g in m.groupby(m.columns.str.split('_').str[0],axis=1)}

然后调用每个键以访问此词典:

print(d['df_3ME'])

根据进一步的讨论,我们执行相同的操作,但条件是:

cond=df.columns.str.contains('__') #check if cols have double _
d={f'df_{i}':g for i, g in 
   df.loc[:,cond].groupby(df.loc[:,cond].columns.str.split('__').str[0],axis=1)}
d.update({'Misc':df.loc[:,~cond]}) #update the dict with all that doesnt meet condition
print(d['df_3ME'])

  3ME__ Q219 3ME__ Q218 3ME__ Q119 3ME__ Q18 3ME__ Q418
0      159.9      112.3        121      85.7      160.5
1                                                      
2       45.6       27.2       23.1      15.3       51.1
3                                                      
4                                                      
5              

print(d['Misc'])

  t_head    r_head  Q219  Q418
0     H1   Revenue            
1     H2   Revenue            
2     H3    Income            
3     H4    Income            
4     H5      Cash  1305  2072
5     H6  Expenses  1239  1117

答案 1 :(得分:1)

您可以检索已创建数据框的列名,并按不在其中的列进行选择:

other_columns = [x for x in df.columns if x not in (list(df1.columns) + list(df2.columns) + list(df3.columns))]

other_df = df[other_columns]

答案 2 :(得分:1)

您也可以尝试这样:

k = list(df1.columns)+ list(df2.columns)+ list(df3.columns)

df = df.drop(k, axis=1)
print(df)

答案 3 :(得分:1)

以上所有方法的结合使我达到了我想要的,

def _split_dataframes(df):
    df = df.set_index(['t_head','r_head'])
    final_dict_key = 0
    final_dict = {}
    names_list = []
    for elems in ['3ME__','6ME__','9ME__','other']:
        if elems != 'other':
            temp_df = df.filter(regex=elems)
            temp_df = temp_df.loc[(temp_df!='').all(axis=1)]
            names_list.extend(list(temp_df.columns))
            if not temp_df.empty:
                temp_df.reset_index(inplace=True)
                final_dict[str(final_dict_key)] = temp_df
                final_dict_key+= 1

        else:
            df.drop(names_list, axis=1,inplace=True)
            df = df.loc[(df!='').all(axis=1)]
            if not df.empty:
                df.reset_index(inplace=True)
                final_dict[str(final_dict_key)] = df

这将拆分主数据帧,并使用如下所示的增量键将其保存到字典中

{
 '0':
     t_head   r_head 3ME__ Q219 3ME__ Q218 3ME__ Q119 3ME__ Q18 3ME__ Q418
   0     H1  Revenue      159.9      112.3        121      85.7      160.5
   1     H3   Income       45.6       27.2       23.1      15.3       51.1, 
 '1': 
     t_head   r_head 6ME__ Q219 6ME__ Q218
   0     H2  Revenue      280.9        198
   1     H4   Income       68.7       42.6, 
 '2':
      t_head   r_head 9ME__ Q417 9ME__ Q318 9ME__ Q317
   0     H1  Revenue      102.6      118.8       79.4
   1     H3   Income       24.2       30.2       15.3, 
 '3':
      t_head    r_head  Q219  Q418
   0     H5      Cash  1305  2072
   1     H6  Expenses  1239  1117
}