我想根据pandas数据框中其他列的值创建一个新列。我的数据是关于一辆从装卸地点到卸货地点来回移动的卡车。我要计算当前路段到最后一段的距离。数据示例如下所示:
State | segment length |
-----------------------------
Loaded | 20 |
Loaded | 10 |
Loaded | 10 |
Empty | 15 |
Empty | 10 |
Empty | 10 |
Loaded | 30 |
Loaded | 20 |
Loaded | 10 |
因此,道路的尽头将是国家变化的记录。因此,我想计算到道路尽头的距离。最终的数据帧将是:
State | segment length | Distance to end
Loaded | 20 | 40
Loaded | 10 | 20
Loaded | 10 | 10
Empty | 15 | 35
Empty | 10 | 20
Empty | 10 | 10
Loaded | 30 | 60
Loaded | 20 | 30
Loaded | 10 | 10
有人可以帮忙吗? 预先谢谢
答案 0 :(得分:4)
将GroupBy.cumsum
与DataFrame.iloc
一起用于交换顺序,并定制Series
与shift
和cumsum
获得唯一的连续组:
g = df['State'].ne(df['State'].shift()).cumsum()
df['Distance to end'] = df.iloc[::-1].groupby(g)['segment length'].cumsum()
print (df)
State segment length Distance to end
0 Loaded 20 40
1 Loaded 10 20
2 Loaded 10 10
3 Empty 15 35
4 Empty 10 20
5 Empty 10 10
6 Loaded 30 60
7 Loaded 20 30
8 Loaded 10 10
详细信息:
print (g)
0 1
1 1
2 1
3 2
4 2
5 2
6 3
7 3
8 3
Name: State, dtype: int32
答案 1 :(得分:0)
df['Distance to end'] = (
df.assign(i=df.State.ne(df.State.shift()).cumsum())
.assign(s=lambda x: x.groupby(by='i')['segment length'].transform(sum))
.groupby(by='i')
.apply(lambda x: x.s.sub(x['segment length'].shift().cumsum().fillna(0)))
.values
)
State segment length Distance to end
0 Loaded 20 40.0
1 Loaded 10 20.0
2 Loaded 10 10.0
3 Empty 15 35.0
4 Empty 10 20.0
5 Empty 10 10.0
6 Loaded 30 60.0
7 Loaded 20 30.0
8 Loaded 10 10.0