嗨我想知道是否有办法找到JUNG中两个节点N1和N2之间的所有可能路径。 在此先感谢任何帮助:)
答案 0 :(得分:3)
我有一些任务需要从顶点A到B的所有路径。
在这里,我使用了ShortestPathDemo.java并对其进行了一些修改,称之为PathDemo.java。人们可以在图中找到最短路径和完整路径。
/******************************
PathDemo.java
******************************/
/*
* Created on Jan 2, 2004
*/
package exasym;
import java.awt.BasicStroke;
import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Component;
import java.awt.Graphics;
import java.awt.Paint;
import java.awt.Stroke;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.geom.Point2D;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Set;
import java.util.TreeSet;
import javax.swing.BorderFactory;
import javax.swing.BoxLayout;
import javax.swing.JComboBox;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.SwingConstants;
import org.apache.commons.collections15.Transformer;
import edu.uci.ics.jung.algorithms.layout.FRLayout;
import edu.uci.ics.jung.algorithms.layout.Layout;
import edu.uci.ics.jung.algorithms.shortestpath.BFSDistanceLabeler;
import edu.uci.ics.jung.algorithms.shortestpath.DijkstraShortestPath;
import edu.uci.ics.jung.graph.DirectedSparseGraph;
import edu.uci.ics.jung.graph.Graph;
import edu.uci.ics.jung.visualization.Layer;
import edu.uci.ics.jung.visualization.VisualizationViewer;
import edu.uci.ics.jung.visualization.control.DefaultModalGraphMouse;
import edu.uci.ics.jung.visualization.decorators.ToStringLabeller;
import edu.uci.ics.jung.visualization.renderers.Renderer;
/**
* Demonstrates use of the shortest path algorithm and visualization of the
* results.
*
* @author danyelf
*/
public class PathDemo extends JPanel {
/**
*
*/
private static final long serialVersionUID = 7526217664458188502L;
/**
* Starting vertex
*/
private String mFrom;
/**
* Ending vertex
*/
private String mTo;
private Graph<String, String> mGraph;
private Set<String> mPred;
private BFSDistanceLabeler<String, String> bdl;
private Graph<String, String> path;
protected boolean full = true;
private JLabel label;
public PathDemo() {
this.mGraph = getGraph();
setBackground(Color.WHITE);
// show graph
final Layout<String, String> layout = new FRLayout<String, String>(
mGraph);
final VisualizationViewer<String, String> vv = new VisualizationViewer<String, String>(
layout);
vv.setBackground(Color.WHITE);
vv.getRenderContext().setVertexDrawPaintTransformer(
new MyVertexDrawPaintFunction<String>());
vv.getRenderContext().setVertexFillPaintTransformer(
new MyVertexFillPaintFunction<String>());
vv.getRenderContext().setEdgeDrawPaintTransformer(
new MyEdgePaintFunction());
vv.getRenderContext().setEdgeStrokeTransformer(
new MyEdgeStrokeFunction());
vv.getRenderContext().setVertexLabelTransformer(
new ToStringLabeller<String>());
vv.setGraphMouse(new DefaultModalGraphMouse<String, String>());
vv.addPostRenderPaintable(new VisualizationViewer.Paintable() {
public boolean useTransform() {
return true;
}
public void paint(Graphics g) {
if (mPred == null)
return;
// for all edges, paint edges that are in shortest path
for (String e : layout.getGraph().getEdges()) {
if (isBlessed(e)) {
String v1 = mGraph.getEndpoints(e).getFirst();
String v2 = mGraph.getEndpoints(e).getSecond();
Point2D p1 = layout.transform(v1);
Point2D p2 = layout.transform(v2);
p1 = vv.getRenderContext().getMultiLayerTransformer()
.transform(Layer.LAYOUT, p1);
p2 = vv.getRenderContext().getMultiLayerTransformer()
.transform(Layer.LAYOUT, p2);
Renderer<String, String> renderer = vv.getRenderer();
renderer.renderEdge(vv.getRenderContext(), layout, e);
}
}
}
});
setLayout(new BorderLayout());
add(vv, BorderLayout.CENTER);
// set up controls
add(setUpControls(), BorderLayout.SOUTH);
}
boolean isBlessed(String e) {
Iterator<String> it = path.getEdges().iterator();
while (it.hasNext()) {
String edge = it.next();
if (edge.equalsIgnoreCase(e.toString()))
return true;
}
return false;
}
/**
* @author danyelf
*/
public class MyEdgePaintFunction implements Transformer<String, Paint> {
public Paint transform(String e) {
if (path == null || path.getEdges().size() == 0)
return Color.BLACK;
if (isBlessed(e)) {
return new Color(0.0f, 0.0f, 1.0f, 0.5f);// Color.BLUE;
} else {
return Color.LIGHT_GRAY;
}
}
}
public class MyEdgeStrokeFunction implements Transformer<String, Stroke> {
protected final Stroke THIN = new BasicStroke(1);
protected final Stroke THICK = new BasicStroke(2);
public Stroke transform(String e) {
if (path == null || path.getEdges().size() == 0)
return THIN;
if (isBlessed(e)) {
return THICK;
} else
return THIN;
}
}
/**
* @author danyelf
*/
public class MyVertexDrawPaintFunction<V> implements Transformer<V, Paint> {
public Paint transform(V v) {
return Color.black;
}
}
public class MyVertexFillPaintFunction<String> implements
Transformer<String, Paint> {
public Paint transform(String v) {
if (v.equals(mFrom)) {
return Color.BLUE;
}
if (v.equals(mTo)) {
return Color.BLUE;
}
if (path == null) {
return Color.LIGHT_GRAY;
} else {
if (mGraph.getVertices().contains(v)) {
return Color.RED;
} else {
return Color.LIGHT_GRAY;
}
}
}
}
/**
*
*/
private JPanel setUpControls() {
JPanel panel = new JPanel();
panel.setBackground(Color.WHITE);
panel.setLayout(new BoxLayout(panel, BoxLayout.PAGE_AXIS));
panel.setBorder(BorderFactory.createLineBorder(Color.black, 3));
label = new JLabel(
"Select a pair of vertices for which all possible paths will be displayed");
panel.add(label);
JPanel jpPathType = new JPanel();
jpPathType.add(new JLabel("Path type", SwingConstants.LEFT));
jpPathType.add(getPathBox());
JPanel jpFrom = new JPanel();
jpFrom.add(new JLabel("vertex from", SwingConstants.LEFT));
jpFrom.add(getSelectionBox(true));
JPanel jpTo = new JPanel();
jpTo.add(new JLabel("vertex to", SwingConstants.LEFT));
jpTo.add(getSelectionBox(false));
panel.add(jpPathType);
panel.add(jpFrom);
panel.add(jpTo);
return panel;
}
public Component getPathBox() {
Set<String> str = new HashSet<String>();
str.add("Shortest");
str.add("Full");
final JComboBox path = new JComboBox(str.toArray());
path.setSelectedItem("Full");
path.setBackground(Color.WHITE);
path.addActionListener(new ActionListener() {
@Override
public void actionPerformed(ActionEvent e) {
String option = (String) path.getSelectedItem();
if (option.equals("Full")) {
full = true;
label.setText("Select a pair of vertices for which all possible paths will be displayed");
} else {
full = false;
label.setText("Select a pair of vertices for which a shortest path will be displayed");
}
drawPath();
repaint();
}
});
return path;
}
protected void drawPath() {
if (mFrom == null || mTo == null) {
return;
}
path = getNewGraph();
if (full) {
path = getPaths();
} else {
path = drawShortest();
}
}
private Component getSelectionBox(final boolean from) {
Set<String> s = new TreeSet<String>();
for (String v : mGraph.getVertices()) {
s.add(v);
}
final JComboBox choices = new JComboBox(s.toArray());
choices.setSelectedIndex(-1);
choices.setBackground(Color.WHITE);
choices.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
String v = (String) choices.getSelectedItem();
if (from) {
mFrom = v;
} else {
mTo = v;
}
drawPath();
repaint();
}
});
return choices;
}
/**
* @return
*
*/
protected Graph<String, String> getPaths() {
path = getNewGraph();
Set<String> visited = new HashSet<String>();
LinkedList<String> currpath = new LinkedList<String>();
findAllPaths(mFrom, visited, path, currpath);
return path;
}
private void findAllPaths(String start, Set<String> visited,
Graph<String, String> path, LinkedList<String> currpath) {
if (visited.contains(start)) {
return;
}
visited.add(start);
currpath.addLast(start);
if (start.equals(mTo)) {
String pred = null;
for (String l : currpath) {
if (pred != null) {
path.addVertex(l);
path.addVertex(pred);
path.addEdge((pred + l), pred, l);
}
pred = l;
}
currpath.removeLast();
visited.remove(start);
return;
}
for (String edge : mGraph.getOutEdges(start)) {
String succ = mGraph.getDest(edge);
findAllPaths(succ, visited, path, currpath);
}
visited.remove(start);
currpath.removeLast();
}
protected Graph<String, String> drawShortest() {
path = getNewGraph();
LinkedList<String> currpath = new LinkedList<String>();
DijkstraShortestPath<String, String> alg = new DijkstraShortestPath(
mGraph);
List<String> l = alg.getPath(mFrom, mTo);
Iterator<String> itrCon = l.iterator();
while (itrCon.hasNext()) {
String c = (String) itrCon.next();
String source = mGraph.getSource(c);
String dest = mGraph.getDest(c);
path.addEdge(source + dest, source, dest);
}
return path;
}
public static void main(String[] s) {
JFrame jf = new JFrame();
jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
jf.getContentPane().add(new PathDemo());
jf.pack();
jf.setVisible(true);
}
/**
* @return the graph for this demo
*/
Graph<String, String> getGraph() {
// Graph<V, E> where V is the type of the vertices and E is the type of
// the edges
Graph<String, String> g = new DirectedSparseGraph<String, String>();
// Add some vertices. From above we defined these to be type Integer.
g.addVertex("A");
g.addVertex("B");
g.addVertex("C");
g.addVertex("D");
// Note that the default is for undirected edges, our Edges are Strings.
g.addEdge("AB", "A", "B"); // Note that Java 1.5 auto-boxes primitives
g.addEdge("BC", "B", "C");
g.addEdge("AC", "A", "C");
g.addEdge("BA", "B", "A");
g.addEdge("CB", "C", "B");
g.addEdge("CA", "C", "A");
g.addEdge("AD", "A", "D");
g.addEdge("CD", "C", "D");
/*
* g.addEdge("AB", "A", "B", EdgeType.DIRECTED); // Note that Java 1.5
* auto-boxes primitives g.addEdge("BC", "B", "C", EdgeType.DIRECTED);
* g.addEdge("AC", "A", "C", EdgeType.DIRECTED);
*/
return g;
}
Graph<String, String> getNewGraph() {
return new DirectedSparseGraph<String, String>();
}
}
答案 1 :(得分:1)
根据文档,我认为没有一种开箱即用的方法可以在两个节点之间建立所有路径。但是,通过管理已经看到的节点列表并从指定节点开始递归访问图形,您可以轻松地调整广度优先搜索。您可以使用AbstractGraph
类(文档here)提供的方法,例如getIncidentVertices
。
无论如何我认为这不是便宜的问题..
答案 2 :(得分:1)
在最坏的情况下,计算N1和N2之间的所有可能路径花费O(n!),并且可能具有那么多输出。
几乎可以肯定的是,您不希望所有可能的路径。你想解决什么问题?
答案 3 :(得分:0)
这个简单的解决方案将返回所有路径。
它也适用于循环图,打印所有循环路径,因此它也可用于循环检测,这在JUNG中是不可用的。
它对节点使用任意类Entity
,对边缘使用Edge
。您可以创建此类对象(确保实现hashcode()
和equals()
),或者只需将其替换为String
个对象,具体取决于您的需求。
public class AllPaths {
private static List<List<Edge>> allPaths;
public static List<List<Edge>> getAllPathsBetweenNodes(DirectedGraph<Entity, Edge> graph, Entity startNode, Entity endNode) {
allPaths = new ArrayList<List<Edge>>();
List<Edge> currentPath = new ArrayList<Edge>();
findAllPaths(startNode, startNode, endNode, currentPath, graph);
return allPaths;
}
private static void findAllPaths(Entity currentNode, Entity startNode, Entity endNode, List<Edge> currentPath, DirectedGraph<Entity, Edge> graph) {
Collection<Edge> outgoingEdges = graph.getOutEdges(currentNode);
for (Edge outEdge : outgoingEdges) {
Entity outNode = outEdge.getSupertype();
if (outNode.equals(startNode)) {
List<Edge> cyclePath = new ArrayList<Edge>(currentPath);
cyclePath.add(outEdge);
System.out.println("Found cycle provoked by path " + cyclePath);
continue;
}
List<Edge> newPath = new ArrayList<Edge>(currentPath);
newPath.add(outEdge);
if (outNode.equals(endNode)) {
allPaths.add(newPath);
continue;
}
findAllPaths(outNode, startNode, endNode, newPath, graph);
}
}
}
答案 4 :(得分:0)
我创建了一个稍微变化,允许您使用泛型,但不再是静态的。你的类型必须具有可比性。对于基本方法,没有必要进行比较。但是,我添加了另一个函数,这对于我的目的来说是必要的,即查找所有唯一路径,即两条路径不能在路径中的位置共享边缘。我只检查相同边缘的路径的相同位置,因此例如,如果两个路径都以相同的边开始,则它们不是唯一的。如果两个路径中的第i个边缘共享,则它不是唯一的。路径仍然可以包含相同的边,而不是路径中的相同位置(索引)。我还添加了一个max-depth参数,因为它似乎所有路径都是n!这永远不会好。
public class AllPathDetector<V, E extends Comparable>
{
private List<List<E>> allPaths;
public List<List<E>> getAllPathsBetweenNodes(DirectedGraph<V, E> graph,
V startNode, V endNode, int maxDepth)
{
allPaths = new ArrayList<List<E>>();
List<E> currentPath = new ArrayList<E>();
findAllPaths(startNode, startNode, endNode, currentPath, graph, maxDepth, 0);
return allPaths;
}
public List<List<E>> getAllUniqePathsBetweenNodes(DirectedGraph<V, E> graph,
V startNode, V endNode, int maxDepth)
{
allPaths = new ArrayList<List<E>>();
List<E> currentPath = new ArrayList<E>();
findAllUniquePaths(startNode, startNode, endNode, currentPath, graph, maxDepth, 0);
return allPaths;
}
private void findAllPaths(V currentNode, V startNode, V endNode,
List<E> currentPath, DirectedGraph<V, E> graph,
int maxDepth, int currentDepth)
{
Collection<E> outgoingEdges = graph.getOutEdges(currentNode);
if (currentDepth < maxDepth)
{
for (E outEdge : outgoingEdges)
{
V outNode = graph.getDest(outEdge);
//String outNode = outEdge.getSupertype();
if (outNode.equals(startNode))
{
List<E> cyclePath = new ArrayList<E>(currentPath);
cyclePath.add(outEdge);
System.out.println("Found cycle provoked by path " + cyclePath);
continue;
}
List<E> newPath = new ArrayList<E>(currentPath);
newPath.add(outEdge);
if (outNode.equals(endNode))
{
allPaths.add(newPath);
continue;
}
findAllPaths(outNode, startNode, endNode, newPath, graph, maxDepth, currentDepth + 1);
}
}
}
private void findAllUniquePaths(V currentNode, V startNode, V endNode,
List<E> currentPath, DirectedGraph<V, E> graph,
int maxDepth, int currentDepth)
{
Collection<E> outgoingEdges = graph.getOutEdges(currentNode);
if (currentDepth < maxDepth)
{
for (E outEdge : outgoingEdges)
{
V outNode = graph.getDest(outEdge);
//String outNode = outEdge.getSupertype();
if (outNode.equals(startNode))
{
List<E> cyclePath = new ArrayList<E>(currentPath);
cyclePath.add(outEdge);
System.out.println("Found cycle provoked by path " + cyclePath);
continue;
}
List<E> newPath = new ArrayList<E>(currentPath);
newPath.add(outEdge);
if (outNode.equals(endNode))
{
//Check for unique-ness before adding.
boolean unique = true;
//Check each existing path.
for (int pathItr = 0; pathItr < allPaths.size(); pathItr++)
{
//Compare the edges of the paths.
for (int edgeItr = 0; edgeItr < allPaths.get(pathItr).size(); edgeItr++)
{
//If the edges are the same, this path is not unique.
if (allPaths.get(pathItr).get(edgeItr).compareTo(newPath.get(edgeItr)) == 0)
{
unique = false;
}
}
}
//After we check all the edges, in all the paths,
//if it is still unique, we add it.
if (unique)
{
allPaths.add(newPath);
}
continue;
}
findAllUniquePaths(outNode, startNode, endNode, newPath, graph, maxDepth, currentDepth + 1);
}
}
}
}
以下是unique-paths的一些示例以及此实现的结果。
A - 1 - > B - 2 - &gt; C和A - 1 - > D - 2 - > C =唯一。
A - 1 - &gt; B - 2 - > C - 3 - &gt; D和A - 1 - > E - 2 - > C - 3- - &gt; D =不唯一。边C - 3 - &gt; D作为边3共享。
A - 1 - &gt; B - 2 - > C - 3 - &gt; D和A - 1 - > E - 2 - &gt; B - 3- - &gt; C - 4 - &gt; D =唯一。边C - # - D包含在两个路径中,但是在第一个路径中它是边3,而在第二个路径中它是边4。