pyspark-从架构中删除标点符号

时间:2019-09-03 15:47:47

标签: json pyspark

我有一个可以通过以下方式加载的json文件:

df = spark.read.json(fpath)

json是嵌套的,并且某些嵌套的列名称中带有标点符号。当我尝试创建非托管表时,这会产生问题。我可以通过创建具有有效列名的模式来解决此问题,但这是一个劳动密集型的过程,因为我有很多文件,每个文件都有很多名称。

我希望能够读取json文件,通过从列名中删除所有标点符号来修改文件模式,然后使用新模式保存文件。有可能吗?

这是一个示例json文件:

[{"cursor": "eyJfaW", "node": {"person": {"_id": "5cca", "display": "66"}, "completedQueues": ["STATEMENT_QUERYBUILDERCACHE_QUEUE", "STATEMENT_PERSON_QUEUE", "STATEMENT_FORWARDING_QUEUE"], "processingQueues": [], "deadForwardingQueue": [], "pendingForwardingQueue": [], "completedForwardingQueue": [], "failedForwardingLog": [], "_id": "5ce372", "hasGeneratedId": false, "organisation": "5b6803e", "lrs_id": "5c9bf", "client": "5c9", "active": true, "voided": false, "timestamp": "2019-05-21T03:36:34.199Z", "stored": "2019-05-21T03:36:34.345Z", "hash": "531c7", "agents": ["mailto:test@gmail.com"], "relatedAgents": ["mailto:test@gmail.com", "mailto:hello@test.net"], "registrations": [], "verbs": ["http://test.gov/expapi/verbs/completed"], "activities": ["https://test.test.org/wgua/pf/spNext/page1"], "relatedActivities": ["https://test.test.org/test/pf/spNext/page1"], "statement": {"id": "b389190", "timestamp": "2019-05-21T03:36:34.199Z", "actor": {"objectType": "Agent", "mbox": "mailto:test@gmail.com", "name": "66"}, "verb": {"id": "http://test.gov/expapi/verbs/completed", "display": {"en-US": "completed"}}, "result": {"extensions": {"http://test.org/xapi/extension/timein": 6.863}}, "object": {"id": "https://test.test.org/wgua/pf/spNext/page1", "objectType": "Activity", "definition": {"type": "http://test.gov/expapi/activities/page", "name": {"en-US": "Strategic Planning - Intro - Page 1"}, "description": {"en-US": "Strategic Planning Introduction Page 1"}, "extensions": {"http://test.org/xapi/extension/path": {"project": "wgua", "course": "test", "section": "spNext", "page": "page1", "object": null}}}}, "stored": "2019-05-21T03:36:34.345Z", "authority": {"objectType": "Agent", "name": "New Client", "mbox": "mailto:hello@test.net"}, "version": "1.0.0"}, "__v": 1, "personaIdentifier": "5cc"}}]

1 个答案:

答案 0 :(得分:1)

尝试一下:

  1. 将json文件加载到DataFrame
import json
import re
from pyspark.sql.types import *

df=spark.read.json("t.json")
df.printSchema()

这将是使用示例数据的模式中的前几个字段,请注意字段“ __v”

root
 |-- cursor: string (nullable = true)
 |-- node: struct (nullable = true)
 |    |-- __v: long (nullable = true)
 |    |-- _id: string (nullable = true)
 |    |-- active: boolean (nullable = true)
 |    |-- activities: array (nullable = true)
 |    |    |-- element: string (containsNull = true)
...
  1. 要从“ __v”中删除__,我们将模式转换为字符串并使用re模块
olds = df.schema
jsonStr = olds.json() # get json string for the schema
jsonStrCleaned = re.sub('_', '', jsonStr) # remove '_'
jsonDataCleaned = json.loads(jsonStrCleaned) # convert the string back to json object
news = StructType.fromJson(jsonDataCleaned)  # construct new schema from the cleaned json
  1. 现在使用已清理的架构创建一个新的DataFrame
df1 = spark.createDataFrame(df.rdd, news)
df1.printSchema()

您可以看到“ __v”字段已更改:

root
 |-- cursor: string (nullable = true)
 |-- node: struct (nullable = true)
 |    |-- v: long (nullable = true)
 |    |-- id: string (nullable = true)
 |    |-- active: boolean (nullable = true)
 |    |-- activities: array (nullable = true)
 |    |    |-- element: string (containsNull = true)
...

现在您可以将DataFrame保存到具有新架构的文件中。