我已经尝试通过中度回归分析“简单斜率” 使用库名称互动 但事实证明那是行不通的
我已经在Google中搜索过,但似乎没有人遇到与我相同的问题
install.packages("interactions", dependencies = TRUE)
library(interactions)
out1 = lm(timetogether ~ malehappy + femalehappy, df)
out2 = lm(timetogether ~ malehappy*femalehappy, df)
summary(out1)
summary(out2)
anova(out1, out2)
sim_slopes(out2, pred = "malehappy", modx = "femalehappy")
当我计算函数名称sim_slopes(out2, pred...)
时
它返回我为
“ isFALSE(row.names)中的错误:找不到函数“ isFALSE””
某些程序可以运行sim_slopes()
而不会出现任何错误。
但是不适合我
我应该怎么做才能解决或检查它?
谢谢
这是dput(df)
structure(list(malehappy = structure(c(62, 53, 55, 36, 60, 50, 45,
53, 48, 50, 63, 46, 72, 40, 40, 30, 49, 49, 45, 59, 46.1513513513514,
51, 36, 47, 53, 65, 46, 39, 41, 56, 54, 41, 36, 46.1513513513514, 51,
50, 47, 56, 44, 42, 61, 44, 47, 55, 57, 55, 32, 62, 53, 60, 59, 65,
49, 49, 60, 56, 67, 54, 46.1513513513514, 46.1513513513514,
46.1513513513514, 34, 57, 61, 73, 42, 84, 46.1513513513514, 47, 43, 46.1513513513514, 59, 40, 42, 49, 55, 46, 56, 50, 48, 57, 50, 53, 46.1513513513514, 50, 46.1513513513514, 61, 64, 48, 42, 31, 71, 54, 29, 45, 56, 53, 56, 47, 48, 39, 58, 51, 48, 54, 52, 57, 89, 53, 53,
44, 53, 40, 47, 40, 47, 54, 69, 60, 56, 47, 65, 50, 29, 58, 50,
46.1513513513514, 39, 66, 50, 46.1513513513514, 47, 38, 50, 70, 36, 59, 71, 41, 54, 18, 46.1513513513514, 38, 29, 71, 46.1513513513514,
51, 46, 48, 61, 52, 41, 48, 44, 37, 43, 54, 56, 44, 55, 51, 64, 52,
38, 48, 60, 45, 43, 44, 39, 54, 56, 47, 53, 51, 43, 49, 50, 56, 41,
37, 49, 59, 60, 72, 31, 58, 52, 49, 58, 60, 52, 47, 65, 63, 67,
46.1513513513514, 54, 60,
46.1513513513514, 52, 43, 45, 26, 50, 40, 35, 43, 38, 40, 53, 36, 62, 30, 30, 46.1513513513514, 39, 39, 35, 49, 34, 41, 26, 37, 43, 55, 36,
29, 31, 46, 44, 31, 26, 28, 41, 40, 37, 46, 34,
46.1513513513514, 51, 34, 37, 45, 47, 45, 22, 52, 43, 50, 49, 55, 39, 39, 50, 46, 46.1513513513514, 44, 46.1513513513514, 43,
46.1513513513514, 24, 47, 51, 63, 32, 74, 24, 37, 33, 42, 49, 30, 32, 39, 45, 36, 46, 40, 46.1513513513514, 47, 40, 43, 58, 40, 47, 51, 54,
38, 32, 21, 61, 44, 19, 35, 46, 43, 46, 37, 38, 29, 48, 41, 38, 44,
42, 47, 79, 43, 43, 34, 43, 30, 37, 30, 37, 44, 59, 50, 46,
46.1513513513514, 55, 40, 19, 48, 40, 37, 29, 56, 40, 49, 37, 28, 46.1513513513514, 60, 26, 49, 61, 31, 44, 8, 36, 28, 19, 61, 38, 41, 36, 38, 51, 42, 31, 38, 34, 27, 33, 44, 46, 46.1513513513514,
46.1513513513514, 46.1513513513514, 54, 42, 28, 38, 50, 35, 46.1513513513514, 34, 29, 46.1513513513514, 46, 37, 43, 41, 33, 39, 40, 46, 31, 27, 39, 49, 46.1513513513514, 62, 46.1513513513514, 48,
42, 39, 48, 50, 42, 37, 55, 53, 57, 44, 44, 50, 52), imputed = c(21L,
34L, 59L, 60L, 61L, 68L, 71L, 84L, 86L, 127L, 131L, 142L, 146L, 197L,
200L, 216L, 240L, 257L, 259L, 261L, 280L, 321L, 334L, 359L, 360L,
361L, 368L, 371L, 384L, 386L), class = "impute"), femalehappy =
structure(c(59, 54, 51, 35, 50, 55.5978260869565, 45, 59, 49, 63, 53,
57, 65, 38, 45, 45, 34, 48, 35, 89, 45, 53, 46, 30, 54, 59, 31, 44,
37, 55, 46, 63, 41, 43, 57, 65, 41, 67, 52, 55, 69, 41, 55, 37, 50,
39, 23, 63, 63, 47, 53, 52, 37, 51, 52, 34, 58, 55, 55.5978260869565,
60, 55.5978260869565, 42, 42, 55.5978260869565, 55, 39, 71,
55.5978260869565, 41, 51, 38, 38, 44, 72, 57, 44, 45, 57, 56, 43, 55.5978260869565, 51, 46, 64, 64, 65, 74, 58, 54, 51, 45, 61, 56, 39, 48, 49, 57, 56, 39, 51, 35, 42, 49, 43, 43, 53, 64, 67, 43, 54, 49,
57, 43, 44, 57, 48, 64, 56, 57, 69, 55.5978260869565, 65, 65, 37, 52,
50, 55.5978260869565, 55.5978260869565, 61, 57, 55.5978260869565, 46,
62, 55, 66, 50, 70, 63, 44, 62, 36, 55.5978260869565, 23, 47, 54,
55.5978260869565, 41, 40, 57, 40, 61, 45, 57, 30, 40, 42, 55.5978260869565, 57, 45, 44, 46, 48, 33, 45, 49, 55, 47, 40, 47, 42, 60, 55.5978260869565, 38, 55.5978260869565, 41, 55, 36, 52, 50, 36,
44, 50, 59, 59, 55.5978260869565, 49, 62, 57, 37, 59, 63, 43, 38, 63,
53, 58, 60, 47, 49, 55.5978260869565, 69, 64, 61, 45, 60, 61, 55, 69,
59, 73, 63, 67, 75, 48, 55, 55.5978260869565, 44, 58, 45, 99, 55, 63,
56, 40, 64, 69, 55.5978260869565, 54, 47, 65, 56, 73, 51, 53, 67, 75,
51, 77, 62, 55.5978260869565, 79, 51, 65, 47, 60, 49, 33, 73, 73,
55.5978260869565, 63, 62, 47, 61, 62, 44, 68, 65, 55.5978260869565, 70, 55.5978260869565, 52, 52, 64, 65, 49, 81, 48, 51, 61, 48, 48, 54,
55.5978260869565, 67, 54, 55, 67, 66, 55.5978260869565, 55.5978260869565, 61, 56, 74, 74, 75, 84, 68, 64, 61, 55, 71, 66, 49, 58, 59, 67, 66, 49, 61, 45, 52, 59, 53, 53, 55.5978260869565, 74, 77,
53, 64, 59, 67, 53, 54, 67, 58, 74, 66, 67, 79, 57, 75, 75, 47, 62,
60, 57, 42, 71, 67, 63, 56, 72, 65, 76, 60, 80, 73, 54, 72, 46, 57,
33, 57, 64, 72, 51, 50, 67, 50, 71, 55, 67, 40, 50, 52, 56, 67,
55.5978260869565, 54, 55.5978260869565, 58, 43, 55.5978260869565, 59, 65, 57, 55.5978260869565, 57, 52, 70, 56, 48, 65, 51, 65, 46, 62, 60,
46, 55.5978260869565, 60, 69, 69, 84, 59, 72, 67, 47, 69, 73, 53, 48,
73, 63, 68, 70, 57, 59, 72), imputed = c(6L, 59L, 61L, 64L, 68L, 81L,
121L, 127L, 128L, 131L, 142L, 146L, 157L, 172L, 174L, 185L, 200L,
216L, 227L, 240L, 250L, 259L, 261L, 274L, 280L, 281L, 306L, 359L,
361L, 364L, 368L, 381L), class = "impute"), timetogether =
structure(c(132, 89, 86, 19, 96, 74, 47, 91.7415143603133, 62, 104,
114, 76, 195, 27, 39, 18, 30, 63, 28, 91.7415143603133, 45, 79, 29,
18, 89, 145, 20, 34, 26, 101, 69, 70, 25, 32, 93, 107, 43, 136, 60,
59, 165, 37, 73, 43, 89, 49, 6, 146, 91.7415143603133, 85,
91.7415143603133, 115, 36, 71, 103, 35, 145, 93, 37, 104, 69, 91.7415143603133, 64, 114, 152, 31, 91.7415143603133, 20, 43, 54, 43, 51, 36, 87, 85, 65, 50, 109, 85, 48, 89, 74, 67, 178, 105, 136, 186,
138, 75, 51, 19, 172, 96, 14, 55, 84, 98, 91.7415143603133, 38, 68,
22, 64, 70, 49, 60, 82, 132, 277, 60, 89, 54, 98, 36, 51, 57, 58,
122, 142, 118, 146, 57, 165, 109, 13, 95, 70, 55, 17, 153, 88, 103,
52, 58, 82, 190, 36, 162, 184, 38, 91.7415143603133, 0, 56, 5, 17,
139, 90, 48, 39, 82, 61, 103, 41, 82, 16, 26, 38, 68, 108, 45, 66,
61, 98, 29, 34, 64, 114, 51, 35, 51, 30, 109, 74, 35, 89, 50,
91.7415143603133, 34, 75, 85, 26, 31, 67, 122, 128, 237, 21, 130, 95, 36, 123, 141, 55, 37, 158, 116, 145, 109, 72, 92, 91.7415143603133,
164, 113, 120, 47, 137, 100, 73, 119, 88, 111, 157, 87, 231, 57, 59,
23, 78, 91, 71, 205, 71, 103, 41, 70, 116, 181, 70, 54, 60, 130, 108,
63, 43, 51, 111, 111, 79, 147, 75, 65, 179, 69, 87, 97, 127, 101, 47,
171, 124, 130, 139, 163, 81, 95, 142, 95, 185, 118, 66, 121, 96, 39,
113, 151, 206, 63, 325, 41, 79, 71, 90, 110, 56, 69, 101, 109, 79,
134, 103, 82, 125, 99, 103, 211, 110, 150, 194, 175, 93, 66, 25, 214,
120, 26, 78, 121, 120, 132, 78, 91, 55, 114, 100, 83, 103, 108, 148,
91.7415143603133, 102, 115, 74, 120, 59, 83, 59, 84, 134, 189, 150, 91.7415143603133, 85, 193, 114, 28, 131, 98, 83, 55, 188, 105, 138, 81, 49, 102, 223, 42, 172, 222, 61, 132, 0, 81, 54, 16, 191, 96, 90,
74, 91.7415143603133, 119, 91.7415143603133, 62, 97, 64, 50, 67, 106,
133, 71, 109, 96, 91.7415143603133, 84, 51, 89, 149,
91.7415143603133, 68, 74, 53, 128, 116, 76, 113, 91, 70, 80, 98, 121, 60, 48, 92, 149, 157, 262, 21, 151, 114, 81, 148, 164, 97, 78, 188,
158, 186, 126, 91.7415143603133, 136, 174), imputed = c(8L, 20L, 49L,
51L, 62L, 67L, 98L, 140L, 176L, 200L, 308L, 320L, 349L, 351L, 362L,
367L, 398L), class = "impute"),
kids = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L
), .Label = c("nokids", "kids"), class = "factor")), .Names = c("malehappy", "femalehappy", "timetogether", "kids"), row.names =
c(NA, -400L ), class = "data.frame")
答案 0 :(得分:0)
它与R版本有关。从3.5版开始,isFALSE函数内置于R中。使用R 3.4时,软件包“ jjtools”遇到相同的错误。将R升级到版本3.6,问题消失了。