在XGboost模型中绘制MAE,RMSE

时间:2019-09-01 20:29:41

标签: python machine-learning scikit-learn xgboost grid-search

我正在尝试从XGboost模型结果中绘制MAE和RMSE。 首先,我使用gridsearchcv查找参数 然后我拟合模型并设置eval_metrics以在拟合模型时打印出来:

DefaultRouter

我得到了适合的正确结果:

myModel = GridSearchCV(estimator=XGBRegressor(
                        learning_rate=0.01,
                        n_estimators=500,
                        max_depth=5,
                        min_child_weight=5,
                        gamma=0,
                        subsample=0.8,
                        colsample_bytree=0.8, 
                        eval_metric ='mae',
                        reg_alpha=0.05
                        ),
                       param_grid = param_search,
                       cv = TimeSeriesSplit(n_splits=5),n_jobs=-1
                      )

#Fit model
eval_set = [(X_train, y_train), (X_test, y_test)]
eval_metric = ["rmse","mae"]
history=myModel.fit(X_train, y_train, eval_metric=eval_metric, eval_set=eval_set)

但是我尝试访问这些值以创建图,但是出现以下错误:

[0] validation_0-rmse:7891  validation_0-mae:7791.42    validation_1-rmse:6465.99   validation_1-mae:6465.52
[1] validation_0-rmse:7813.98   validation_0-mae:7714.55    validation_1-rmse:6398.87   validation_1-mae:6398.4

如何获取这些值?

1 个答案:

答案 0 :(得分:0)

您可以创建结果字典,然后将其传递以适合

progress = dict()

history=myModel.fit(X_train, y_train, evals_result=progress eval_metric=eval_metric, eval_set=eval_set)

print(progress)