我正在尝试使用Talos运行超参数优化。由于要测试的参数很多,因此我想使用“ grid_downsample”参数,该参数将选择所有可能的超参数组合的30%。但是,当我运行代码时,我得到:TypeError: __init__() got an unexpected keyword argument 'grid_downsample'
我在没有'grid_downsample'选项且超参数较少的情况下测试了以下代码。
#load data
data = pd.read_csv('data.txt', sep="\t", encoding = "latin1")
# split into input (X) and output (y) variables
Y = np.array(data['Y'])
data_bis = data.drop(['Y'], axis = 1)
X = np.array(data_bis)
p = {'activation':['relu'],
'optimizer': ['Nadam'],
'first_hidden_layer': [12],
'second_hidden_layer': [12],
'batch_size': [20],
'epochs': [10,20],
'dropout_rate':[0.0, 0.2]}
def dnn_model(x_train, y_train, x_val, y_val, params):
model = Sequential()
#input layer
model.add(Dense(params['first_hidden_layer'], input_shape=(1024,)))
model.add(Dropout(params['dropout_rate']))
model.add(Activation(params['activation']))
#hidden layer 2
model.add(Dense(params['second_hidden_layer']))
model.add(Dropout(params['dropout_rate']))
model.add(Activation(params['activation']))
# output layer with one node
model.add(Dense(1))
model.add(Activation(params['activation']))
# Compile model
model.compile(loss='binary_crossentropy', optimizer=params['optimizer'], metrics=['accuracy'])
out = model.fit(x_train, y_train,
batch_size=params['batch_size'],
epochs=params['epochs'],
validation_data=[x_val, y_val],
verbose=0)
return out, model
scan_object = ta.Scan(X, Y, model=dnn_model, params=p, experiment_name="test")
reporting = ta.Reporting(scan_object)
report = reporting.data
report.to_csv('./Random_search/dnn/report_talos.txt', sep = '\t')
此代码运行良好。如果我将scan_object的结尾更改为:scan_object = ta.Scan(X, Y, model=dnn_model, grid_downsample=0.3, params=p, experiment_name="test")
,它会给我错误:TypeError: __init__() got an unexpected keyword argument 'grid_downsample'
,而我希望它的结果格式与普通网格搜索相同,但组合较少。我想念什么?参数名称是否更改?我在conda环境中使用Talos 0.6.3。
谢谢!
答案 0 :(得分:1)
现在对您来说可能为时已晚,但他们已将其切换为fraction_limit。会给你这个
scan_object = ta.Scan(X, Y, model=dnn_model, params=p, experiment_name="test", fraction_limit = 0.1)
遗憾的是,该文档没有很好地更新
在GitHub上查看他们的示例: https://github.com/autonomio/talos/blob/master/examples/Hyperparameter%20Optimization%20with%20Keras%20for%20the%20Iris%20Prediction.ipynb