我有一个要运行的基本模型,并且不断收到以下错误消息:
错误:运行模型时发生意外异常:NL编写器在未知模型上检测到多个活动目标函数,但当前仅处理单个目标。
鉴于该错误,我认为CPLEX正在将我的目标函数解释为一个多目标问题。我想做的是最小化在索引(i,j,t)上定义的'model.obj',但是我不认为这意味着我有多个目标函数吗?目标函数试图用下面的等式11表示:
from __future__ import division
from pyomo.environ import *
from MPBFunctions import *
# Variable Initialization Matricies
susceptible_init = mpbdata(1,3,1,3)
inf_b4treat_init = mpbdata(1,3,13,15)
##########################################################################################################################
# Set Declaration
##########################################################################################################################
model = ConcreteModel()
Imax = 3
Jmax = 3
Tmax = 2
Kmax = 2
model.Iset = RangeSet(1,Imax) # e.g. i = {1, 2, 3}
model.Jset = RangeSet(1,Jmax)
model.Tset = RangeSet(1,Tmax)
model.Kset = RangeSet(1,Kmax)
##########################################################################################################################
# Parameter Declaration
##########################################################################################################################
##########################################################################################################################
# Variable Declaration
##########################################################################################################################
model.susceptible = Var(model.Iset,model.Jset,model.Tset, initialize=initial_values(3,2,susceptible_init))
model.inf_b4treat = Var(model.Iset,model.Jset,model.Tset, initialize=initial_values(3,2,inf_b4treat_init))
model.inf_treated = Var(model.Iset,model.Jset,model.Tset)
model.level1 = Var(model.Iset,model.Jset,model.Tset,within=Binary)
##########################################################################################################################
# Objective Function
##########################################################################################################################
def objective_rule(model,i,j,t):
return model.obj[i,j,t] == sum(2*model.inf_b4treat[i,j,t] for i in model.Iset for j in model.Jset for t in model.Tset)
model.damages = Objective(model.Iset, model.Jset, model.Tset, rule=objective_rule)
##########################################################################################################################
# Constraint Declaration w/ Imax=Jmax=Tmax = 3 and Kmax = 3
##########################################################################################################################
# Constraint 4: Susceptible recruitment
def susceptible_advance_rule(model, i, j, t):
if t == Tmax:
return Constraint.Skip
else:
return model.susceptible[i, j, t + 1] == model.susceptible[i, j, t] - model.inf_b4treat[i, j, t]
model.susceptible_advance = Constraint(model.Iset, model.Jset, model.Tset, rule=susceptible_advance_rule)
# Constraint 9: Treated Infestation
def treatment_rule(model, i, j, t):
return model.inf_treated[i, j, t] == 0.20 * model.susceptible[i, j,t] * (1 - 0.15 * model.level1[i, j, t])
model.treated_pop = Constraint(model.Iset, model.Jset, model.Tset, rule=treatment_rule)
答案 0 :(得分:1)
textdistance
函数应返回一个表达式,您将返回一个相等性(就好像它是一个约束一样)。
objective_rule
还要仔细检查您输入的数据是否正确。