我有两个这样的数据框
+---+---+---+---+---+
| c1| c2| c3| c4| c5|
+---+---+---+---+---+
| 0| 1| 2| 3| 4|
| 5| 6| 7| 8| 9|
+---+---+---+---+---+
+---+---+
|key|val|
+---+---+
| 0| A|
| 1| B|
| 2| C|
| 3| D|
| 4| E|
| 5| F|
| 6| G|
| 7| H|
| 8| I|
| 9| J|
+---+---+
我想用df2中的等效键在df1上查找每一列,并从df2返回每个的查找值。
这是产生两个输入数据帧的代码
df1 = sc.parallelize([('0','1','2','3','4',), ('5','6','7','8','9',)]).toDF(['c1','c2','c3','c4','c5'])
df1.show()
df2 = sc.parallelize([('0','A',), ('1','B', ),('2','C', ),('3','D', ),('4','E',),\
('5','F',), ('6','G', ),('7','H', ),('8','I', ),('9','J',)]).toDF(['key','val'])
df2.show()
I want to join the above to produce the following
+---+---+---+---+---+---+---+---+---+---+
| c1| c2| c3| c4| c5|lu1|lu2|lu3|lu4|lu5|
+---+---+---+---+---+---+---+---+---+---+
| 0| 1| 2| 3| 4|A |B |C |D |E |
| 5| 6| 7| 8| 9|F |G |H |I |J |
+---+---+---+---+---+---+---+---+--+----+
我可以像这样使它适用于单个列,但是我不确定如何将其扩展到所有列
df1.join(df2, df1.c1 == df2.key).select('c1','val').show()
+---+---+
| c1|val|
+---+---+
| 0| A|
| 5| F|
+---+---+
答案 0 :(得分:1)
您可以链接联接:
df1
.join(df2, on=df1.c1 == df2.key, how='left')
.withColumnRenamed('val', 'lu1') \
.join(df2, on=df1.c2 == df2.key, how='left) \
.withColumnRenamed('val', 'lu2') \
.etc
您甚至可以循环执行此操作,但不要在太多列中执行该操作:
from pyspark.sql import functions as f
df = df1
for i in range(1, 6):
df = df \
.join(df2.alias(str(i)), on=f.col('c{}'.format(i)) == f.col("{}.key".format(i)), how='left') \
.withColumnRenamed('val', 'lu{}'.format(i))
df \
.select('c1', 'c2', 'c3', 'c4', 'c5', 'lu1', 'lu2', 'lu3', 'lu4', 'lu5') \
.show()
输出
+---+---+---+---+---+---+---+---+---+---+
| c1| c2| c3| c4| c5|lu1|lu2|lu3|lu4|lu5|
+---+---+---+---+---+---+---+---+---+---+
| 5| 6| 7| 8| 9| F| G| H| I| J|
| 0| 1| 2| 3| 4| A| B| C| D| E|
+---+---+---+---+---+---+---+---+---+---+