将Spark数据框转换为镶木地板

时间:2019-08-28 11:15:38

标签: pyspark parquet

我有一个包含40个Mio行(包括4个带日期的列)的spark数据框。

将其正确设置为日期列,意味着不包含任何字符串。

但是,将此数据帧写入.parquet

table.write.mode("overwrite").partitionBy("name").parquet(output + table_name + ".parquet")

总是会出现以下错误:

    return d.toordinal() - self.EPOCH_ORDINAL
AttributeError: 'str' object has no attribute 'toordinal'

因此,无论出于何种原因,写入过程都希望将任何字符串字段转换为日期。

查看错误的回溯信息无法提示可能导致此行为的字段。

有没有一种方法可以找出哪个字段/行?而且它不会影响所有行。 Runnig使用较少的记录集就可以很好地工作。

/opt/spark-2.4.3-bin-hadoop2.7/python/pyspark/sql/dataframe.py in show(self, n, truncate, vertical)
    376         """
    377         if isinstance(truncate, bool) and truncate:
--> 378             print(self._jdf.showString(n, 20, vertical))
    379         else:
    380             print(self._jdf.showString(n, int(truncate), vertical))

/opt/spark-2.4.3-bin-hadoop2.7/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py in __call__(self, *args)
   1255         answer = self.gateway_client.send_command(command)
   1256         return_value = get_return_value(
-> 1257             answer, self.gateway_client, self.target_id, self.name)
   1258 
   1259         for temp_arg in temp_args:

/opt/spark-2.4.3-bin-hadoop2.7/python/pyspark/sql/utils.py in deco(*a, **kw)
     61     def deco(*a, **kw):
     62         try:
---> 63             return f(*a, **kw)
     64         except py4j.protocol.Py4JJavaError as e:
     65             s = e.java_exception.toString()

/opt/spark-2.4.3-bin-hadoop2.7/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
    326                 raise Py4JJavaError(
    327                     "An error occurred while calling {0}{1}{2}.\n".
--> 328                     format(target_id, ".", name), value)
    329             else:
    330                 raise Py4JError(

Py4JJavaError: An error occurred while calling o486.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 5 in stage 65.0 failed 1 times, most recent failure: Lost task 5.0 in stage 65.0 (TID 120, localhost, executor driver): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/opt/spark-2.4.3-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/worker.py", line 377, in main
    process()
  File "/opt/spark-2.4.3-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/worker.py", line 372, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/opt/spark-2.4.3-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/serializers.py", line 345, in dump_stream
    self.serializer.dump_stream(self._batched(iterator), stream)
  File "/opt/spark-2.4.3-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/serializers.py", line 141, in dump_stream
    for obj in iterator:
  File "/opt/spark-2.4.3-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/serializers.py", line 334, in _batched
    for item in iterator:
  File "<string>", line 1, in <lambda>
  File "/opt/spark-2.4.3-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/worker.py", line 83, in <lambda>
    return lambda *a: toInternal(f(*a))
  File "/opt/spark-2.4.3-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/sql/types.py", line 174, in toInternal
    return d.toordinal() - self.EPOCH_ORDINAL
AttributeError: 'str' object has no attribute 'toordinal'

    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:452)
    at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$1.read(PythonUDFRunner.scala:81)
    at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$1.read(PythonUDFRunner.scala:64)
    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:406)
    at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
    at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage8.processNext(Unknown Source)
    at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
    at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
    at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:148)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
    at org.apache.spark.scheduler.Task.run(Task.scala:121)
    at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)

Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1889)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1877)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1876)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1876)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
    at scala.Option.foreach(Option.scala:257)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2110)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2059)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2048)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
    at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:365)
    at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
    at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3383)
    at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2544)
    at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2544)
    at org.apache.spark.sql.Dataset$$anonfun$53.apply(Dataset.scala:3364)
    at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
    at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
    at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3363)
    at org.apache.spark.sql.Dataset.head(Dataset.scala:2544)
    at org.apache.spark.sql.Dataset.take(Dataset.scala:2758)
    at org.apache.spark.sql.Dataset.getRows(Dataset.scala:254)
    at org.apache.spark.sql.Dataset.showString(Dataset.scala:291)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:238)
    at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/opt/spark-2.4.3-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/worker.py", line 377, in main
    process()
  File "/opt/spark-2.4.3-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/worker.py", line 372, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/opt/spark-2.4.3-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/serializers.py", line 345, in dump_stream
    self.serializer.dump_stream(self._batched(iterator), stream)
  File "/opt/spark-2.4.3-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/serializers.py", line 141, in dump_stream
    for obj in iterator:
  File "/opt/spark-2.4.3-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/serializers.py", line 334, in _batched
    for item in iterator:
  File "<string>", line 1, in <lambda>
  File "/opt/spark-2.4.3-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/worker.py", line 83, in <lambda>
    return lambda *a: toInternal(f(*a))
  File "/opt/spark-2.4.3-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/sql/types.py", line 174, in toInternal
    return d.toordinal() - self.EPOCH_ORDINAL
AttributeError: 'str' object has no attribute 'toordinal'

    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:452)
    at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$1.read(PythonUDFRunner.scala:81)
    at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$1.read(PythonUDFRunner.scala:64)
    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:406)
    at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
    at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage8.processNext(Unknown Source)
    at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
    at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
    at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:148)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
    at org.apache.spark.scheduler.Task.run(Task.scala:121)
    at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    ... 1 more

0 个答案:

没有答案