我将通过考虑它们的时间相关性来完善与视频帧相关的顺序热图。 我使用了ConvLSTM2D,但是输出看起来像输入平均值!精度小于输入。 每个热图显示每个帧中每个关节的空间概率。 你能帮我找到问题吗?
ModelInputSize = 300
TimeStep = 7
Joint= 16
def get_model():
X = Input(shape=(TimeStep, ModelInputSize, ModelInputSize, Joint),
batch_shape=(BatchSize,TimeStep, ModelInputSize, ModelInputSize, Joint),name='X')
temp = ConvLSTM2D(filters=Joint, kernel_size=(3, 3), # 16
padding='same', return_sequences=True)(X)
temp = BatchNormalization()(temp)
Y = Conv3D(filters=Joint, kernel_size=(3, 3, 3), # 16
activation='sigmoid', # 'sigmoid',
padding='same', data_format='channels_last')(temp)
Y = Conv3D(filters=Joint, kernel_size=(1, 1, 1), # 16
activation='sigmoid', # 'sigmoid',
padding='same', data_format='channels_last')(Y)
temp = Conv3D(filters=Joint, kernel_size=(1,1,1), # 16
activation='sigmoid', # 'sigmoid',
padding='same', data_format='channels_last')(X)
Y = keras.layers.Add()([temp, Y])
model = Model(input=X, output=Y)
model.compile(loss='mean_squared_error', optimizer='sgd') # 'sgd'
model.summary()
return model