上传Excel或CSV会导致错误。我遵循了Dash演示,但是一旦我尝试对其进行扩展以进行诸如绘图之类的操作时,它将无法正常工作。我不想只显示一张桌子。 Dash_Table函数已更新,因此以前使用Dash_Table_Experiments的示例不再起作用
我整夜都在交换堆栈,修改代码和阅读其他解决方案。下面提供了完整的工作代码。我还想添加一个下拉回调函数,以通过分类变量“过滤”数据。
import base64
import datetime
import io
import plotly.graph_objs as go
import dash
from dash.dependencies import Input, Output, State
import dash_core_components as dcc
import dash_html_components as html
import dash_table
import pandas as pd
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.layout = html.Div([
dcc.Upload(
id='upload-data',
children=html.Div([
'Drag and Drop or ',
html.A('Select Files')
]),
style={
'width': '100%',
'height': '60px',
'lineHeight': '60px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center',
'margin': '10px'
},
# Allow multiple files to be uploaded
multiple=False
),
html.Div(id='output-data-upload'),
dcc.Graph(id='graph1')
])
def parse_contents(contents, filename):
content_type, content_string = contents.split(',')
decoded = base64.b64decode(content_string)
try:
if 'csv' in filename:
# Assume that the user uploaded a CSV file
df = pd.read_csv(
io.StringIO(decoded.decode('utf-8')))
elif 'xls' in filename:
# Assume that the user uploaded an excel file
df = pd.read_excel(io.BytesIO(decoded))
except Exception as e:
print(e)
return html.Div([
'There was an error processing this file.'
])
return html.Div([
html.H5(filename),
# html.H6(datetime.datetime.fromtimestamp(date)),
dash_table.DataTable(
data=df.to_dict('records'),
columns=[{'name': i, 'id': i} for i in df.columns]
),
html.Hr(), # horizontal line
# For debugging, display the raw contents provided by the web browser
html.Div('Raw Content'),
html.Pre(contents[0:200] + '...', style={
'whiteSpace': 'pre-wrap',
'wordBreak': 'break-all'
})
])
@app.callback(Output('output-data-upload', 'children'),
[Input('upload-data', 'contents')],
[State('upload-data', 'filename')])
def update_output(list_of_contents, list_of_names):
if list_of_contents is not None:
children = [
parse_contents(c, n) for c, n in
zip(list_of_contents, list_of_names)]
return children
@app.callback(
Output('graph1', 'figure'),
[Input('upload-data', 'contents'),
Input('upload-data', 'filename')])
def plot_graph(contents, filename):
df = parse_contents(contents, filename)
trace1 = go.Bar(
x=df['Quarter'],
y=df['Score'],
)
layout = go.Layout(
title='graph1'
)
fig = go.Figure(data = [trace1], layout=layout)
return fig
if __name__ == '__main__':
app.run_server(debug=True)
我得到的错误是:回调错误,更新了output-data-upload.children:ValueError:没有足够的值要解压(预期2,得到1)
和
AttributeError:'NoneType'对象没有属性'split'
问题似乎出在python处理解析器的方式上:
def parse_contents(contents, filename):
content_type, content_string = contents.split(',')
decoded = base64.b64decode(content_string)
但是,所有解决方案似乎都无法解决问题。
请帮助。既然有这么多人为此而苦苦挣扎(看来),那么如果我们能够解决它并发布一个能完成Shiny可以轻松完成的功能的代码(Github?),那就太好了。
答案 0 :(得分:0)
您的代码:
children = [
parse_contents(c, n) for c, n in
zip(list_of_contents, list_of_names)]
然后
def parse_contents(contents, filename):
content_type, content_string = contents.split(',')
decoded = base64.b64decode(content_string)
...
如果c
处于None(无),则contents
的{{1}}参数为None(无),并且发生“ None has no .split”错误,就会发生错误。
如果parse_contents
不是None而是只有一个单词,则c
仅返回一个元素,并且发生“没有足够的值要解压”错误。
我将对其进行过滤:
contents.split()
您还可以考虑在pairs = zip(list_of_contents, list_of_names)
children = [parse_contents(c, n) for (c, n) in pairs if c and (len(c.split(',')) == 2)]
外部进行拆分,并更改其周围的代码。
我还将尝试记录内容错误的文件名,例如parse_contents
。
答案 1 :(得分:0)
解决了。在这里发帖供其他人使用:
def parse_contents(contents, filename):
if contents is not None:
content_type, content_string = contents.split(',')
decoded = base64.b64decode(content_string)
try:
if 'csv' in filename:
# Assume that the user uploaded a CSV file
df = pd.read_csv(
io.StringIO(decoded.decode('utf-8')))
elif 'xlsx' in filename:
# Assume that the user uploaded an excel file
df = pd.read_excel(io.BytesIO(decoded))
except Exception as e:
print(e)
return html.Div([
'There was an error processing this file.'
])
return df
else:
return [{}]
@app.callback(Output('table', 'data'),
[Input('upload-data', 'contents'),
Input('upload-data', 'filename')])
def update_output(contents, filename):
if contents is not None:
df = parse_contents(contents, filename)
if df is not None:
return df.to_dict('records')
else:
return [{}]
else:
return [{}]
@app.callback(
Output('graph1', 'figure'),
[Input('upload-data', 'contents'),
Input('upload-data', 'filename')])
def plot_graph(contents, filename):
df = parse_contents(contents, filename)
trace1 = go.Bar(
x=df['Quarter'],
y=df['Score'],
)
layout = go.Layout(
title='graph1'
)
fig = go.Figure(data = [trace1], layout=layout)
return fig