Tinder允许您导出数据(https://account.gotinder.com/data),最终导出data.json
文件。
如何将嵌套的json转换为可以加载到电子表格中的CSV文件?
文件看起来像这样:
$ cat data.json |jq .Usage
{
"app_opens": {
"2018-06-03": 3,
"2018-06-04": 10,
"2018-06-05": 2,
...
用于:
messages_sent
matches
messages_received
swipes_passes
swipes_likes
app_opens
带有有趣数据的完整json如下:
{
"Usage": {
"app_opens": {
"2018-06-03": 3,
"2018-06-04": 10,
"2018-06-05": 2
},
"messages_sent": {
"2018-06-03": 7,
"2018-06-04": 9,
"2018-06-05": 0
},
"matches": {
"2018-06-03": 3,
"2018-06-04": 1,
"2018-06-05": 7
},
"messages_received": {
"2018-06-03": 30,
"2018-06-04": 1,
"2018-06-05": 20
},
"swipes_passes": {
"2018-06-03": 56,
"2018-06-04": 1,
"2018-06-05": 8
},
"swipes_likes": {
"2018-06-03": 30,
"2018-06-04": 4,
"2018-06-05": 4
}
}
}
输出应如下所示:
date,messages_sent,matches,messages_received,swipes_passes,swipes_likes,app_opens
2018-06-03,0,2,0,4,10,2
2018-06-04,2,2,1,1,18,6
2018-06-05,35,7,32,1,47,3
答案 0 :(得分:2)
要打动您的约会,您显然需要比Python更强悍的工具。由于输入格式为json,因此jq
是一个不错的选择:
tndr2csv
#!/usr/bin/jq -rf
.Usage as $u|$u|keys as $k|
(["date"]+$k|@csv),
(.[$k[0]]|keys|map(. as $d|[.]+($k|map($u[.][$d]))|@csv))[]
像这样运行它:
$ chmod +x tndr2csv
$ ./tndr2csv data.json
这将输出:
"date","app_opens","matches","messages_received","messages_sent","swipes_likes","swipes_passes"
"2018-06-03",3,3,30,7,30,56
"2018-06-04",10,1,1,9,4,1
"2018-06-05",2,7,20,0,4,8
...可以作为电子表格打开。
答案 1 :(得分:1)
这是一个易于阅读且功能强大的jq程序,可以完成此任务:
["date", "messages_sent", "matches", "messages_received", "swipes_passes", "swipes_likes", "app_opens"] as $keys
| .Usage
| ([.[] | keys_unsorted] | add | unique) as $dates
| $keys,
($dates[] as $d | [$d] + [ .[$keys[1:][]][$d] ])
| @csv
从几种意义上讲,它是“稳健的”-输入对象中键的顺序并不重要,并且以日期作为键的对象不必具有相同的键,并且它们不必具有相同的顺序,或者确实按时间顺序排列。在所有具有相同或更高健壮性的程序中,该程序也非常有效。
答案 2 :(得分:-1)
此Python代码将完成这项工作:
from __future__ import print_function
import json
import itertools
# load json into an object
with open('data.json') as f:
d = json.load(f)
usage = d['Usage']
# get all listed dates
dates = sorted(set(itertools.chain.from_iterable([[day for day in usage[t]] for t in usage])))
# pivot data into one row per date with multiple columns
print(','.join(['date']+[t for t in usage]))
for day in dates:
print(','.join([day] + [str(usage[t][day]) for t in usage]))
这会将json文件中的使用情况数据转换为如下所示的csv:
date,messages_sent,matches,messages_received,swipes_passes,swipes_likes,app_opens
2018-06-03,0,2,0,4,10,2
2018-06-04,2,2,1,1,18,6
2018-06-05,35,7,32,1,47,3
2018-06-06,16,1,9,4,32,2