我的数据框如下:
Val1<-c(0.5,0.7,0.8,0.9)
Val2<-c(0.5,0.7,0.8,0.9)
Val3<-c(0.5,0.7,0.8,0.9)
Val4<-c(0.5,0.7,0.8,0.9)
vales<-data.frame(Val1,Val2,Val3,Val4)
row.names(vales)<-c("asd","dasd","dfsdf","fdff")
为了创建具有以下特征的聚类散点图,我对其进行了适当处理:
library(tidyverse) # data manipulation
library(cluster) # clustering algorithms
library(factoextra) # clustering algorithms & visualization
library(plotly)
cl<-scale(vales)
dist <- get_dist(cl)
k2 <- kmeans(cl, centers = 2, nstart = 25)
cl %>%
as_tibble() %>%
mutate(cluster = k2$cluster,
state = row.names(vales))
p2<-fviz_cluster(k2, data = cl)
p2+geom_text(aes(label=""))
#or
ggplotly(p2+geom_text(aes(label="")))
我想删除点的标签,但我不明白为什么它们在以下情况下却不显示。
df <- USArrests
df <- na.omit(df)
df <- scale(df)
distance <- get_dist(df)
k2 <- kmeans(df, centers = 2, nstart = 25)
df %>%
as_tibble() %>%
mutate(cluster = k2$cluster,
state = row.names(USArrests))
p1 <- fviz_cluster(k2, geom = "point", data = df) + ggtitle("k = 2")
p1+geom_text(aes(label=""))
#or
ggplotly(p1+geom_text(aes(label="")))
答案 0 :(得分:2)
默认情况下,<input name="boxesnumbers" value="5 3 1">
<a href="#" >3</a>
<a href="#" >5</a>
<a href="#" >1</a>
<script>
$('a').click(function() {
$('[name="boxesnumbers"]').val($('[name="boxesnumbers"]').val().replace($(this).text(), ''))
});
</script>
的{{1}}自变量为from imblearn.over_sampling import ADASYN
ada = ADASYN()
# X is feature set and y is the label
X_resampled, y_resampled = ada.fit_sample(X, y)
# Add X_resampled, y_resampled into one dataframe
。通过指定geom
,不会显示标签(fviz_cluster
仅显示标签)。
geom=c("point","text")