我将在张量板上可视化Cost函数,但是当我运行以下代码时....我收到此错误: AttributeError:“列表”对象没有属性“值”
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
logs_path = 'log_simple_stats_5_layers_relu_softmax'
writer = tf.summary.FileWriter(logs_path,graph=tf.get_default_graph())
for epoch in range(training_epochs):
batch_count = int(mnist.train.num_examples/batch_size)
for i in range(batch_count):
batch_x, batch_y = mnist.train.next_batch(batch_size)
summary = sess.run([train_step, summary_op],feed_dict={XX: batch_x,Y_: batch_y})
writer.add_summary(summary,epoch * batch_count + i)
print ("Epoch: ", epoch)
print ("Accuracy: ", accuracy.eval(feed_dict={XX: mnist.test.images,Y_: mnist.test.labels}))
print ("done")
error is :
AttributeError Traceback (most recent call last)
<ipython-input-89-979d49859de1> in <module>
10 batch_x, batch_y = mnist.train.next_batch(batch_size)
11 summary = sess.run([train_step, summary_op],feed_dict={XX: batch_x,Y_: batch_y})
---> 12 writer.add_summary(summary,epoch * batch_count + i)
13 print ("Epoch: ", epoch)
14
~\Anaconda3\lib\site-packages\tensorflow\python\summary\writer\writer.py in add_summary(self, summary, global_step)
125 # to save space - we just store the metadata on the first value with a
126 # specific tag.
--> 127 for value in summary.value:
128 if not value.metadata:
129 continue
AttributeError: 'list' object has no attribute 'value'