发布和评论模型
class Post(models.Model):
title = models.CharField(max_length=120)
content = models.TextField()
class Comment(models.Model):
post = models.ForeignKey(Post, on_delete=models.CASCADE)
content = models.TextField()
帖子详细信息的类视图
class PostDetailView(DetailView):
model = Post
context_object_name = 'post'
template_name = 'posts/detail.html'
def get_queryset(self, *args, **kwargs):
request = self.request
pk = self.kwargs.get('pk')
queryset = Post.objects.filter(pk=pk)
return queryset
在模板中,我这样做
{% for comment in post.comment_set.all %}
{% comment.content %}
{% endfor %}
通过这种方法,所有评论都显示在帖子详细信息页面中。但是,我想对帖子的评论进行分页,以便可以对评论进行分页,而不显示整个评论列表。
我该怎么做?
答案 0 :(得分:0)
默认情况下,在django中提供分页器。您可以通过像这样覆盖from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
classifier = Sequential()
classifier.add(Conv2D(16, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
`classifier.add(MaxPooling2D(pool_size = (2, 2)))
classifier.add(Conv2D(32, (3, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))`
classifier.add(Conv2D(64, (3, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
classifier.add(Dense(units = 128, activation = 'relu'))
classifier.add(Dense(units = 1, activation = 'sigmoid'))
classifier.add(Flatten())
classifier.add(Dense(units = 128, activation = 'relu'))
classifier.add(Dense(units = 1, activation = 'sigmoid'))
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
from keras.callbacks import TensorBoard
# Use TensorBoard
callbacks = TensorBoard(log_dir='./Graph')
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('dataset/training_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
test_set = test_datagen.flow_from_directory('dataset/test_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
classifier.fit_generator(training_set,
steps_per_epoch = 100,
epochs = 200,
validation_data = test_set,
validation_steps = 200)
classifier.save('model.h5')
方法来对注释进行分页。
get_context_data
您可以像这样通过在模板上循环来显示commnet。
def get_context_data(self, **kwargs):
context = super(PostDetailView, self).get_context_data(**kwargs)
comments = context['post'].comment_set.all()
paginator = Paginator(comments, per_page=50)
page_number = 1 # get it from query sting or whatever the way you want
page = paginator.page(page_number)
context['comments'] = page
return context
有关渲染分页控件的更多信息,请在此处查阅official docs about paginators。