我有两个数据帧(df1和df2,如下所示),它们的列在顺序和计数上都不同。我需要将这两个数据框附加到Excel文件中,其中列顺序必须按照下面的Col_list
中的指定。
df1是:
durable_medical_equipment pcp specialist diagnostic imaging generic formulary_brand non_preferred_generic emergency_room inpatient_facility medical_deductible_single medical_deductible_family maximum_out_of_pocket_limit_single maximum_out_of_pocket_limit_family plan_name pdf_name
0 False False False False False False False False False False False False False False ABCBCBC adjnajdn.pdf
...而df2是:
pcp specialist generic formulary_brand emergency_room urgent_care inpatient_facility durable_medical_equipment medical_deductible_single medical_deductible_family maximum_out_of_pocket_limit_single maximum_out_of_pocket_limit_family plan_name pdf_name
0 True True False False True True True True True True True True ABCBCBC adjnajdn.pdf
我正在创建与Excel中的列顺序相同的列列表。
Col_list = ['durable_medical_equipment', 'pcp', 'specialist', 'diagnostic',
'imaging', 'generic', 'formulary_brand', 'non_preferred_generic',
'emergency_room', 'inpatient_facility', 'medical_deductible_single',
'medical_deductible_family', 'maximum_out_of_pocket_limit_single', 'maximum_out_of_pocket_limit_family',
'urgent_care', 'plan_name', 'pdf_name']
我正在尝试使用concat()
根据Col_list重新排序数据框。对于数据框中不存在的列值,其值可以为NaN。
result = pd.concat([df, pd.DataFrame(columns=list(Col_list))])
这不能正常工作。如何实现这种重新排序?
我尝试了以下操作:
result = pd.concat([df_repo, pd.DataFrame(columns=list(Col_list))], sort=False, ignore_index=True)
print(result.to_string())
我得到的输出是:
durable_medical_equipment pcp specialist diagnostic imaging generic formulary_brand non_preferred_generic emergency_room inpatient_facility medical_deductible_single medical_deductible_family maximum_out_of_pocket_limit_single maximum_out_of_pocket_limit_family plan_name pdf_name urgent_care
0 False False False False False False False False False False False False False False ABCBCBC adjnajdn.pdf NaN
pcp specialist generic formulary_brand emergency_room urgent_care inpatient_facility durable_medical_equipment medical_deductible_single medical_deductible_family maximum_out_of_pocket_limit_single maximum_out_of_pocket_limit_family plan_name pdf_name diagnostic imaging non_preferred_generic
0 True True False False True True True True True True True True ABCBCBC adjnajdn.pdf NaN NaN NaN
答案 0 :(得分:0)
如果需要按列表中值的更改顺序使用,请添加DataFrame.reindex
并传递到concat
:
df = pd.concat([df1.reindex(Col_list, axis=1),
df2.reindex(Col_list, axis=1)], sort=False, ignore_index=True)
print (df)
durable_medical_equipment pcp specialist diagnostic imaging generic \
0 False False False 0.0 0.0 False
1 True True True NaN NaN False
formulary_brand non_preferred_generic emergency_room inpatient_facility \
0 False 0.0 False False
1 False NaN True True
medical_deductible_single medical_deductible_family \
0 False False
1 True True
maximum_out_of_pocket_limit_single maximum_out_of_pocket_limit_family \
0 False False
1 True True
urgent_care plan_name pdf_name
0 NaN ABCBCBC adjnajdn.pdf
1 1.0 ABCBCBC adjnajdn.pdf