填充组中其他行的缺失值(包括重复项)

时间:2019-08-22 17:23:17

标签: r

我有一个数据集,其中有一些缺失的值,我想用同一组的其他成员来填充。但是,在某些情况下,每个组有多个值,在这些情况下,我希望每个组中的所有行都被复制为一行包含每个值。

样本数据:

   ID group value
1   1     A  blue
2   2     A  <NA>
3   3     A  <NA>
4   4     B green
5   4     B   red
6   5     B  <NA>
7   6     B  <NA>
8   7     C  blue
9   8     C green
10  9     C    NA

我想结束的是:

  ID group value
1  1     A  blue
2  2     A  blue
3  3     A  blue
4  4     B green
5  4     B   red
6  5     B green
7  5     B   red
8  6     B green
9  6     B   red
10 7     C  blue
11 7     C green
12 8     C  blue
13 8     C green
14 9     C  blue
15 9     C green

在某些情况下,该组包含一个具有两个值的ID(例如B组),而其他情况是该组中有多个ID,每个ID都具有不同的值(例如C)。无论如何,我想要一个表,其中该组的每个成员都具有该组中的每个值。我已经找到了一些答案,可以解决A组等简单情况,但每个组都没有一个以上的价值。

====编辑====

我的实际数据集要大得多,这引起了一些其他问题。更新后的示例表如下:

ID group value specific_value dataversion
1     A  blue       sky_blue    version1
2     A  <NA>           <NA>    version2
3     A  <NA>           <NA>    version1
4     B green   forest_green    version1
4     B   red        scarlet    version1
5     B  <NA>           <NA>    version2
6     B  <NA>           <NA>        <NA>
7     C  blue     royal_blue    version2
8     C green     lime_green    version1
9     C  <NA>           <NA>    version1

对于每个组,我要为该组的每个成员都包含一行,其中包含该组的每组值+ specific_value(但我不希望一行包含例如blue和lime_green)。我希望其他所有列(ID,组和数据版本)的所有值都保持原样(包括例如,如果数据版本为NA)。

预期输出:

ID group value specific_value dataversion
1     A  blue       sky_blue    version1
2     A  blue       sky_blue    version2
3     A  blue       sky_blue    version1
4     B green   forest_green    version1
4     B   red        scarlet    version1
5     B green   forest_green    version2
5     B   red        scarlet    version2
6     B green   forest_green        <NA>
6     B   red        scarlet        <NA>
7     C  blue     royal_blue    version2
7     C green     lime_green    version2
8     C  blue     royal_blue    version1
8     C green     lime_green    version1
9     C  blue     royal_blue    version1
9     C green     lime_green    version1

即。表中ID,组和数据版本的每种组合都与原始表相同,但是每个组的value和specific_value的每种组合现在都有一行。请注意,在我的实际表中,我有〜50列数据(1个分组列,〜6相当于这里的值/特定值,其余的都像ID / dataversion一样对待),所以我宁愿不必键入每一列名称。

1 个答案:

答案 0 :(得分:2)

我们可能在这里需要complete。按“组”分组后,使用complete获取每个“组”和“ ID”的unique非NA“值”的组合

library(dplyr)
library(tidyr)
library(stringr)
df1 %>% 
   group_by(group) %>%
   complete(ID, value = unique(value[!is.na(value)])) %>%
   na.omit %>%
   select(names(df1))
# A tibble: 15 x 3
# Groups:   group [3]
#      ID group value
#   <int> <chr> <chr>
# 1     1 A     blue 
# 2     2 A     blue 
# 3     3 A     blue 
# 4     4 B     green
# 5     4 B     red  
# 6     5 B     green
# 7     5 B     red  
# 8     6 B     green
# 9     6 B     red  
#10     7 C     blue 
#11     7 C     green
#12     8 C     blue 
#13     8 C     green
#14     9 C     blue 
#15     9 C     green

更新

有了新的数据集,我们可以做到

df2 %>%
   group_by(group) %>%
   mutate(valnew = str_c(value, specific_value, sep=":")) %>% 
   select(-value, -specific_value, -dataversion) %>%
   complete(ID, valnew = unique(valnew[!is.na(valnew)])) %>% 
   filter(!is.na(valnew)) %>% 
   separate(valnew, into = c('value', 'specific_value'), sep=":") %>% 
   mutate(rn = row_number()) %>%
   left_join(df2 %>% 
               select(ID, dataversion)) %>%
   filter(!duplicated(rn)) %>%
   select(names(df2))
# A tibble: 15 x 5
# Groups:   group [3]
#      ID group value specific_value dataversion
#   <int> <chr> <chr> <chr>          <chr>      
# 1     1 A     blue  sky_blue       version1   
# 2     2 A     blue  sky_blue       version2   
# 3     3 A     blue  sky_blue       version1   
# 4     4 B     green forest_green   version1   
# 5     4 B     red   scarlet        version1   
# 6     5 B     green forest_green   version2   
# 7     5 B     red   scarlet        version2   
# 8     6 B     green forest_green   <NA>       
# 9     6 B     red   scarlet        <NA>       
#10     7 C     blue  royal_blue     version2   
#11     7 C     green lime_green     version2   
#12     8 C     blue  royal_blue     version1   
#13     8 C     green lime_green     version1   
#14     9 C     blue  royal_blue     version1   
#15     9 C     green lime_green     version1   

数据

df1 <- structure(list(ID = c(1L, 2L, 3L, 4L, 4L, 5L, 6L, 7L, 8L, 9L), 
    group = c("A", "A", "A", "B", "B", "B", "B", "C", "C", "C"
    ), value = c("blue", NA, NA, "green", "red", NA, NA, "blue", 
    "green", NA)), row.names = c("1", "2", "3", "4", "5", "6", 
"7", "8", "9", "10"), class = "data.frame")


df2 <- structure(list(ID = c(1L, 2L, 3L, 4L, 4L, 5L, 6L, 7L, 8L, 9L), 
    group = c("A", "A", "A", "B", "B", "B", "B", "C", "C", "C"
    ), value = c("blue", NA, NA, "green", "red", NA, NA, "blue", 
    "green", NA), specific_value = c("sky_blue", NA, NA, "forest_green", 
    "scarlet", NA, NA, "royal_blue", "lime_green", NA), dataversion = c("version1", 
    "version2", "version1", "version1", "version1", "version2", 
    NA, "version2", "version1", "version1")), class = "data.frame",
    row.names = c(NA, 
-10L))