我需要以与matlab的interp2函数相同的方式为python设置interp2
我尝试使用与matlabs inter2相同的scipy interp2d函数
Matlab:interp2(x,y,yy,new_xx,new_yy)
x = 37,39,41
y = 2.5,2.75,3
yy = [[0.6 + 1.6j,0.6 + 1.6j,0.6 + 1.6j],[0.7 + 1.6j,0.7 + 1.6j,0.7 + 1.6j],[0.8 + 1.5j,0.8 + 1.5j ,0.8 + 1.5j]]-3x3数组
new_xx = np.linspace(37,41,401)
new_yy = np.linspace(0,3,401)
'''
stack
'''
当我运行func = scipy.interpolate.interp2d(x,y,yy)时收到错误 “ ComplexWarning:将复杂值转换为实数会丢弃虚部”
我如何遍历复数?
答案 0 :(得分:1)
我在将 MATLAB 代码转换为 Python 时也遇到了这个问题。这并不完全直观,但对我有用的解决方案实际上是使用 scipy 的 griddata 函数而不是 interp2d 函数,如下所述:How can I perform two-dimensional interpolation using scipy?
以下是供参考的文档:scipy.interpolate.griddata
OP 可能看起来像这样:
import numpy as np
from scipy import interpolate
points = np.array([x, y]).T
values = yy.ravel()
xi = np.array([new_xx, new_yy]).T
arr= interpolate.griddata(points, values, xi)
但是,我不得不做一些不同的事情,因为我的 x 和 y 是二维数组。
import numpy as np
from scipy import interpolate
# Creating x and y of size=(m,m) from someArray of size(m,)
# (x and y here are my version of OP's new_xx and new_yy)
x, y = np.meshgrid(someArray, someArray)
# These are my version of OP's x and y
xScaled = x * scaleFactor
yScaled = y * scaleFactor
points = np.array([xScaled.ravel(), yScaled.ravel()]).T
values = myMatrix.ravel() # myMatrix has size=(m,m) and includes complex numbers, similar to OP's yy variable
xi = np.array([x.ravel(), y.ravel()]).T
# 2D interpolation
myInterp2d = interpolate.griddata(points, values, xi, method='linear')
# Returning my data to original shape
myNewMatrix = myInterp2d.reshape(myMatrix.shape)
但是请注意您的输出,因为 griddata 函数似乎没有提供任何外推选项,它只是填充了 nans。
答案 1 :(得分:0)
一种解决方案是执行两个不同的插值:“如果V包含复数,则interp2分别对实部和虚部进行插值。”来自interp2 matlab documentation。
import numpy as np
from scipy.interpolate import interp2d
x = np.array([37, 39, 41])
y = np.array([2.5, 2.75, 3])
z = np.array([[0.6 + 1.6j, 0.6 + 1.6j, 0.6 + 1.6j],
[0.7 + 1.6j, 0.7 + 1.6j, 0.7 + 1.6j],
[0.8 + 1.5j, 0.8 + 1.5j, 0.8 + 1.5j]])
# 2D grid interpolation
interpolator_real = interp2d(x, y, np.real(z))
interpolator_imag = interp2d(x, y, np.imag(z))
def interpolator_complex(x, y):
return interpolator_real(x, y) + 1j*interpolator_imag(x, y)
# test
new_x = np.linspace(37, 41, 6)
new_y = np.linspace(2.5, 3, 8)
interpolator_complex(new_x, new_y)