logits和标签必须具有相同的第一尺寸,logits形状[3662,5]和标签形状[18310]

时间:2019-08-21 16:23:17

标签: python-3.x tensorflow conv-neural-network

我正在尝试使用张量流创建CNN,我的图像是64x64x1图像,并且我有3662个图像数组用于训练。我总共有5个标签,其中有一个是热编码的。我每次都会收到此错误:

InvalidArgumentError: logits and labels must have the same first dimension, got logits shape [3662,5] and labels shape [18310]
     [[{{node loss_2/dense_5_loss/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits}}]]

我的神经网络结构是这样的:

def cnn_model():
    model = models.Sequential()
#     model.add(layers.Dense(128, activation='relu', ))
    model.add(layers.Conv2D(128, (3, 3), activation='relu',input_shape=(64, 64, 1)))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(64, (3, 3), activation='relu',padding = 'same'))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(64, (3, 3), activation='relu', padding='same'))
    model.add(layers.Dense(64, activation='relu'))
    model.add(layers.Flatten())
    model.add(layers.Dense(5, activation='softmax'))

    model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(),
              metrics=['accuracy'])
    print(model.summary())
    return model

我的模型摘要是这样:

Model: "sequential_3"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_9 (Conv2D)            (None, 62, 62, 128)       1280      
_________________________________________________________________
max_pooling2d_6 (MaxPooling2 (None, 31, 31, 128)       0         
_________________________________________________________________
conv2d_10 (Conv2D)           (None, 31, 31, 64)        73792     
_________________________________________________________________
max_pooling2d_7 (MaxPooling2 (None, 15, 15, 64)        0         
_________________________________________________________________
conv2d_11 (Conv2D)           (None, 15, 15, 64)        36928     
_________________________________________________________________
dense_4 (Dense)              (None, 15, 15, 64)        4160      
_________________________________________________________________
flatten_2 (Flatten)          (None, 14400)             0         
_________________________________________________________________
dense_5 (Dense)              (None, 5)                 72005     
=================================================================
Total params: 188,165
Trainable params: 188,165
Non-trainable params: 0

我的输出数组的形状为(3662,5,1)。我已经看到了相同问题的其他答案,但我无法弄清楚我的问题。我在哪里错了?

编辑:我的标签使用以下一种热编码形式存储:

df = pd.get_dummies(df)
diag = np.array(df)
diag = np.reshape(diag,(3662,5,1))

我尝试作为numpy数组并转换为张量后(根据文档输入相同)

1 个答案:

答案 0 :(得分:1)

选择损失函数tf.keras.losses.SparseCategoricalCrossentropy()中的问题线。根据您要实现的目标,应使用tf.keras.losses.CategoricalCrossentropy()。即,tf.keras.losses.SparseCategoricalCrossentropy()的{​​{3}}指出:

  

当存在两个或多个标签类别时,请使用此交叉熵损失函数。我们希望标签以整数形式提供。

另一方面,tf.keras.losses.CategoricalCrossentropy()中的documentation指出:

  

我们希望标签以one_hot表示形式提供。

而且由于您的标签被编码为一次性标签,因此您应该使用tf.keras.losses.CategoricalCrossentropy()