我正在尝试使用张量流创建CNN,我的图像是64x64x1图像,并且我有3662个图像数组用于训练。我总共有5个标签,其中有一个是热编码的。我每次都会收到此错误:
InvalidArgumentError: logits and labels must have the same first dimension, got logits shape [3662,5] and labels shape [18310]
[[{{node loss_2/dense_5_loss/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits}}]]
我的神经网络结构是这样的:
def cnn_model():
model = models.Sequential()
# model.add(layers.Dense(128, activation='relu', ))
model.add(layers.Conv2D(128, (3, 3), activation='relu',input_shape=(64, 64, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu',padding = 'same'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(5, activation='softmax'))
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=['accuracy'])
print(model.summary())
return model
我的模型摘要是这样:
Model: "sequential_3"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_9 (Conv2D) (None, 62, 62, 128) 1280
_________________________________________________________________
max_pooling2d_6 (MaxPooling2 (None, 31, 31, 128) 0
_________________________________________________________________
conv2d_10 (Conv2D) (None, 31, 31, 64) 73792
_________________________________________________________________
max_pooling2d_7 (MaxPooling2 (None, 15, 15, 64) 0
_________________________________________________________________
conv2d_11 (Conv2D) (None, 15, 15, 64) 36928
_________________________________________________________________
dense_4 (Dense) (None, 15, 15, 64) 4160
_________________________________________________________________
flatten_2 (Flatten) (None, 14400) 0
_________________________________________________________________
dense_5 (Dense) (None, 5) 72005
=================================================================
Total params: 188,165
Trainable params: 188,165
Non-trainable params: 0
我的输出数组的形状为(3662,5,1)。我已经看到了相同问题的其他答案,但我无法弄清楚我的问题。我在哪里错了?
编辑:我的标签使用以下一种热编码形式存储:
df = pd.get_dummies(df)
diag = np.array(df)
diag = np.reshape(diag,(3662,5,1))
我尝试作为numpy数组并转换为张量后(根据文档输入相同)
答案 0 :(得分:1)
选择损失函数tf.keras.losses.SparseCategoricalCrossentropy()
中的问题线。根据您要实现的目标,应使用tf.keras.losses.CategoricalCrossentropy()
。即,tf.keras.losses.SparseCategoricalCrossentropy()
的{{3}}指出:
当存在两个或多个标签类别时,请使用此交叉熵损失函数。我们希望标签以整数形式提供。
另一方面,tf.keras.losses.CategoricalCrossentropy()
中的documentation指出:
我们希望标签以one_hot表示形式提供。
而且由于您的标签被编码为一次性标签,因此您应该使用tf.keras.losses.CategoricalCrossentropy()
。