我正在一台具有16个内核和64GB RAM的计算机上运行,并希望将dask与LocalCluster结合使用,因为需要使用性能分析工具进行优化。
我按照here的说明设置了LocalCluster。仍然给我以下错误:
Traceback (most recent call last):
File "/data/myusername/anaconda3/lib/python3.7/site-packages/distributed/protocol/pickle.py", line 38, in dumps
result = pickle.dumps(x, protocol=pickle.HIGHEST_PROTOCOL)
TypeError: can't pickle _thread._local objects
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/myusername/remote_code/trials/minimal_reproducible_example.py", line 61, in <module>
create_matrix()
File "/home/myusername/remote_code/trials/minimal_reproducible_example.py", line 55, in create_matrix
da.store(w, d_set, dtype="float32")
File "/data/myusername/anaconda3/lib/python3.7/site-packages/dask/array/core.py", line 916, in store
result.compute(**kwargs)
File "/data/myusername/anaconda3/lib/python3.7/site-packages/dask/base.py", line 175, in compute
(result,) = compute(self, traverse=False, **kwargs)
File "/data/myusername/anaconda3/lib/python3.7/site-packages/dask/base.py", line 446, in compute
results = schedule(dsk, keys, **kwargs)
File "/data/myusername/anaconda3/lib/python3.7/site-packages/distributed/client.py", line 2499, in get
actors=actors,
File "/data/myusername/anaconda3/lib/python3.7/site-packages/distributed/client.py", line 2426, in _graph_to_futures
"tasks": valmap(dumps_task, dsk3),
File "cytoolz/dicttoolz.pyx", line 179, in cytoolz.dicttoolz.valmap
File "cytoolz/dicttoolz.pyx", line 204, in cytoolz.dicttoolz.valmap
File "/data/myusername/anaconda3/lib/python3.7/site-packages/distributed/worker.py", line 3186, in dumps_task
return {"function": dumps_function(task[0]), "args": warn_dumps(task[1:])}
File "/data/myusername/anaconda3/lib/python3.7/site-packages/distributed/worker.py", line 3195, in warn_dumps
b = dumps(obj)
File "/data/myusername/anaconda3/lib/python3.7/site-packages/distributed/protocol/pickle.py", line 51, in dumps
return cloudpickle.dumps(x, protocol=pickle.HIGHEST_PROTOCOL)
File "/data/myusername/anaconda3/lib/python3.7/site-packages/cloudpickle/cloudpickle.py", line 1108, in dumps
cp.dump(obj)
File "/data/myusername/anaconda3/lib/python3.7/site-packages/cloudpickle/cloudpickle.py", line 473, in dump
return Pickler.dump(self, obj)
File "/data/myusername/anaconda3/lib/python3.7/pickle.py", line 437, in dump
self.save(obj)
File "/data/myusername/anaconda3/lib/python3.7/pickle.py", line 504, in save
f(self, obj) # Call unbound method with explicit self
File "/data/myusername/anaconda3/lib/python3.7/pickle.py", line 786, in save_tuple
save(element)
File "/data/myusername/anaconda3/lib/python3.7/pickle.py", line 549, in save
self.save_reduce(obj=obj, *rv)
File "/data/myusername/anaconda3/lib/python3.7/pickle.py", line 662, in save_reduce
save(state)
File "/data/myusername/anaconda3/lib/python3.7/pickle.py", line 504, in save
f(self, obj) # Call unbound method with explicit self
File "/data/myusername/anaconda3/lib/python3.7/pickle.py", line 856, in save_dict
self._batch_setitems(obj.items())
File "/data/myusername/anaconda3/lib/python3.7/pickle.py", line 882, in _batch_setitems
save(v)
File "/data/myusername/anaconda3/lib/python3.7/pickle.py", line 524, in save
rv = reduce(self.proto)
TypeError: can't pickle _thread._local objects
我使用所有AFAIK所需版本的最新版本:
这是可重现的最小示例:
import os
import dask.array as da
import h5py
import numpy as np
from dask.distributed import Client
MY_USER_NAME = "myusername"
EARTH_RADIUS = 6372.795
CHUNK_SIZE = 5000
N = 20000
def create_matrix():
lat_vec = np.random.random(N) * 90
lon_vec = np.random.random(N) * 180
lat_vec = np.radians(lat_vec)
lon_vec = np.radians(lon_vec)
sin_lat_vec = np.sin(lat_vec)
cos_lat_vec = np.cos(lat_vec)
def _blocked_calculate_great_circle_distance(block, block_info=None):
loc = block_info[0]['array-location']
(row_start, row_stop) = loc[0]
(col_start, col_stop) = loc[1]
# see https://en.wikipedia.org/wiki/Great-circle_distance
# and https://github.com/ulope/geopy/blob/master/geopy/distance.py
row_lon = lon_vec[row_start:row_stop]
col_lon = lon_vec[col_start:col_stop]
delta_lon = row_lon[:, np.newaxis] - col_lon
cos_delta_lon = np.cos(delta_lon)
central_angle = np.arccos(sin_lat_vec[row_start:row_stop, np.newaxis] * sin_lat_vec[col_start:col_stop] +
cos_lat_vec[row_start:row_stop, np.newaxis] * cos_lat_vec[col_start:col_stop]
* cos_delta_lon)
return EARTH_RADIUS * central_angle
dir_path = "/home/" + MY_USER_NAME + "/minimum_reproducible_example/"
if not os.path.exists(dir_path):
os.makedirs(dir_path)
file_path = os.path.join(dir_path, "matrix.hdf5")
if os.path.exists(file_path):
os.remove(file_path)
with h5py.File(file_path) as f:
d_set = f.create_dataset('/data', shape=(N, N), dtype='f4', fillvalue=0)
w = da.from_array(d_set, chunks=(CHUNK_SIZE, CHUNK_SIZE))
w = w.map_blocks(_blocked_calculate_great_circle_distance, chunks=(CHUNK_SIZE, CHUNK_SIZE), dtype='f4')
da.store(w, d_set, dtype="float32")
if __name__ == '__main__':
client = Client(processes=False)
create_matrix()
有人可以帮我吗?