我正在尝试使用自己的数据集根据https://github.com/bentrevett/pytorch-sentiment-analysis/blob/master/5%20-%20Multi-class%20Sentiment%20Analysis.ipynb对文本进行分类。我的数据集是句子的csv和与之相关的类。有6种不同的类别:
sent class
'the fox is brown' animal
'the house is big' object
'one water is drinkable' water
...
运行时:
N_EPOCHS = 5
best_valid_loss = float('inf')
for epoch in range(N_EPOCHS):
start_time = time.time()
print(start_time)
train_loss, train_acc = train(model, train_iterator, optimizer, criterion)
print(train_loss.type())
print(train_acc.type())
valid_loss, valid_acc = evaluate(model, valid_iterator, criterion)
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), 'tut5-model.pt')
print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s')
print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}%')
print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc*100:.2f}%')
,我收到以下错误消息
RuntimeError: "log_softmax_lastdim_kernel_impl" not implemented for 'torch.LongTensor'
指向:
<ipython-input-38-9c6cff70d2aa> in train(model, iterator, optimizer, criterion)
14 print('pred'+ predictions.type())
15 #batch.label = batch.label.type(torch.LongTensor)
---> 16 loss = criterion(predictions.long(), batch.label)**
此处https://github.com/pytorch/pytorch/issues/14224发布的解决方案建议我需要使用long / int。
我必须在.long()
行添加**
才能解决此较早的错误:
RuntimeError: Expected object of scalar type Long but got scalar type Float for argument #2 'target'
具体的代码行是:
def train(model, iterator, optimizer, criterion):
epoch_loss = 0
epoch_acc = 0
model.train()
for batch in iterator:
optimizer.zero_grad()
predictions = model(batch.text)
print('pred'+ predictions.type())
#batch.label = batch.label.type(torch.LongTensor)
loss = criterion(predictions.long(), batch.label)**
acc = categorical_accuracy(predictions, batch.label)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
请注意,**最初是loss = criterion(predictions, batch.label)
还有其他解决此问题的建议吗?
答案 0 :(得分:1)
criterion
在您的notebook中定义为torch.nn.CrossEntropyLoss()
。如CrossEntropyLoss
的文档中所述,它期望模型为每个“ K”类返回概率值,并为地面标签提供相应的值作为输入。现在,概率值是浮点张量,而地面真相标签应该是代表一个类的长张量(类不能是浮点,例如2.3不能代表一个类)。因此:
loss = criterion(predictions, batch.label.long())
应该工作。
答案 1 :(得分:0)
如果使用gpu,而不是在损失标准下定义long类型,则可能应该在使用cuda之前定义它。我遇到同样的错误。解决了以下问题:
# move data to GPU, if available
if train_on_gpu:
inp = inp.cuda()
target = target.long()
target=target.cuda()
h = tuple([each.data for each in hidden])
# perform backpropagation and optimization
#zero accumulated gradient
rnn.zero_grad()
#getting out_put from model
output,h = rnn(inp,h)
#calculating loss and performing back_propagation
loss = criterion(output.squeeze(), target)