您能帮我在bert输出的顶部添加新的bilstm层吗?
output_layer = model.get_pooled_output()
# Here, we make alterations to add the extra features
output_layer_extra_features = tf.concat([output_layer, tf.convert_to_tensor(extra_features, dtype=tf.float32)],
axis=1)
hidden_size = output_layer_extra_features.shape[-1].value
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer_extra_features = tf.nn.dropout(output_layer_extra_features, keep_prob=0.9)
logits = tf.matmul(output_layer_extra_features, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
probabilities = tf.nn.softmax(logits, axis=-1)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)